Browse > Article
http://dx.doi.org/10.3807/COPP.2021.5.4.375

Design of an Antireflection Coating for High-efficiency Superconducting Nanowire Single-photon Detectors  

Choi, Jiman (Quantum Technology Institute, Korea Research Institute of Standards and Science)
Choi, Gahyun (Quantum Technology Institute, Korea Research Institute of Standards and Science)
Lee, Sun Kyung (Quantum Technology Institute, Korea Research Institute of Standards and Science)
Park, Kibog (Department of Physics, Ulsan National Institute of Science and Technology)
Song, Woon (Quantum Technology Institute, Korea Research Institute of Standards and Science)
Lee, Dong-Hoon (Department of Science of Measurement, University of Science and Technology)
Chong, Yonuk (Department of Nano Engineering, Sungkyunkwan University)
Publication Information
Current Optics and Photonics / v.5, no.4, 2021 , pp. 375-383 More about this Journal
Abstract
We present a simulation method to design antireflection coating (ARCs) for fiber-coupled superconducting nanowire single-photon detectors. Using a finite-element method, the absorptance of the nanowire is calculated for a defined unit-cell structure consisting of a fiber, ARC layer, nanowire absorber, distributed Bragg reflector (DBR) mirror, and air gap. We develop a method to evaluate the uncertainty in absorptance due to the uncontrollable parameter of air-gap distance. The validity of the simulation method is tested by comparison to an experimental realization for a case of single-layer ARC, which results in good agreement. We show finally a double-layer ARC design optimized for a system detection efficiency of higher than 95%, with a reduced uncertainty due to the air-gap distance.
Keywords
Antireflection coating; Detection efficiency; Superconducting nanowire single photon detector;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Phys. Rev. Lett. 68, 3121-3124 (1992).   DOI
2 S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.- A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, "Satellite-to-ground quantum key distribution," Nature 549, 43-47 (2017).   DOI
3 J. L. O'Brien, "Optical quantum computing," Science 318, 1567-1570 (2007).   DOI
4 R. Blatt and D. Wineland, "Entangled states of trapped atomic ions," Nature 453, 1008-1015 (2008).   DOI
5 S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, "Advances in photonic quantum sensing," Nat. Photonics 12, 724-733 (2018).   DOI
6 Y.-Q. Fang, W. Chen, T.-H. Ao, C. Liu, L. Wang, X.-J. Gao, J. Zhang, and J.-W. Pan, "InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm," Rev. Sci. Instrum. 91, 083102 (2020).   DOI
7 N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145 (2002).   DOI
8 A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Stacey, A. M. Steane, and D. M. Lucas, "High-fidelity readout of trapped-ion qubits," Phys. Rev. Lett. 100, 200502 (2008).   DOI
9 C. Lv, W. Zhang, L. You, P. Hu, H. Wang, H. Li, C. Zhang, J. Huang, Y. Wang, X. Yang, Z. Wang, and X. Xie, "Improving maximum count rate of superconducting nanowire single-photon detector with small active area using series attenuator," AIP Adv. 8, 105018 (2018).   DOI
10 D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, "Photon-efficient imaging with a single-photon camera," Nat. Commun. 7, 12046 (2016).   DOI
11 G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, "Fabrication and properties of an ultrafast NbN hot-electron single-photon detector," IEEE Trans. Appl. Supercond. 11, 574-577 (2001).   DOI
12 C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, "Superconducting nanowire single-photon detectors: physics and applications," Supercond. Sci. Technol. 25, 063001 (2012).   DOI
13 I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, J. Chang, A. W. Elshaari, J. R. Zichi, Y. J. Van Staaden, J. P. E. Swens, N. Kalhor, A. Guardiani, Y. Meng, K. Zou, S. Dobrovolskiy, A. W. Fognini, D. R. Schaart, D. Dalacu, P. J. Poole, M. E. Reimer, X. Hu, S. F. Pereira, V. Zwiller, and S. N. Dorenbos, "Efficient single-photon detection with 7.7 ps time resolution for photoncorrelation measurements," ACS Photonics 7, 1780-1787 (2020).   DOI
14 D. V. Reddy, R. R. Nerem, S. W. Nam, R. P. Mirin, and V. B. Verma, "Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm," Optica 7, 1649-1653 (2020).   DOI
15 J. Chang, J. W. N. Los, J. O. Tenorio-Pearl, N. Noordzij, R. Gourgues, A. Guardiani, J. R. Zichi, S. F. Pereira, H. P. Urbach, V. Zwiller, S. N. Dorenbos, and I. Esmaeil Zadeh, "Detecting telecom single photons with (99.5 +0.5 -2.07 ) % system detection efficiency and high time resolution," APL Photonics 6, 036114 (2021).   DOI
16 A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, "Compact cryogenic self-aligning fiberto-detector coupling with losses below one percent," Opt. Express 19, 9102-9110 (2011).   DOI
17 A. Mukhtarova, L. Redaelli, D. Hazra, H. Machhadani, S. Lequien, M. Hofheinz, J.-L. Thomassin, F. Gustavo, J. Zichi, V. Zwiller, E. Monroy, and J.-M. Gerard, "Polarization-insensitive fiber-coupled superconducting-nanowire single photon detector using a high-index dielectric capping layer," Opt. Express 26, 17697-17704 (2018).   DOI
18 B. Korzh, Q.-Y. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Pena, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, "Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector," Nat. Photonics 14, 250-255 (2020).   DOI
19 L. Redaelli, V. Zwiller, E. Monroy, and J. M. Gerard, "Design of polarization-insensitive superconducting single photon detectors with high-index dielectrics," Supercond. Sci. Technol. 30, 035005 (2017).   DOI
20 B. Baek, A. E. Lita, V. Verma, and S. W. Nam, "Superconducting a-WxSi1-x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm," Appl. Phys. Lett. 98, 251105 (2011).   DOI
21 R. Gourgues, J. W. N. Los, J. Zichi, J. Chang, N. Kalhor, G. Bulgarini, S. N. Dorenbos, V. Zwiller, and I. E. Zadeh, "Superconducting nanowire single photon detectors operating at temperature from 4 to 7 K," Opt. Express 27, 24601-24609 (2019).   DOI
22 G. Lavareda, Y. Vygranenko, A. Amaral, C. Nunes de Carvalho, N. P. Barradas, E. Alves, and P. Brogueira, "Dependence of optical properties on composition of silicon carbonitride thin films deposited at low temperature by PECVD," J. Non. Cryst. Solids 551, 120434 (2021).   DOI
23 E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, "Review of superconducting nanowire single-photon detector system design options and demonstrated performance," Opt. Eng. 53, 081907 (2014).   DOI
24 O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, "Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths," Sci. Rep. 5, 10941 (2015).   DOI
25 H. Li, X. Yang, L. You, H. Wang, P. Hu, W. Zhang, Z. Wang, and X. Xie, "Improving detection efficiency of superconducting nanowire single-photon detector using multilayer antireflection coating," AIP Adv. 8, 115022 (2018).   DOI
26 F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, "Detecting single infrared photons with 93% system efficiency," Nat. Photonics 7, 210-214 (2013).   DOI
27 V. B. Verma, B. Korzh, F. Bussieres, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, "High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K," Appl. Phys. Lett. 105, 122601 (2014).   DOI
28 V. B. Verma, B. Korzh, F. Bussieres, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, "High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films," Opt. Express 23, 33792-33801 (2015).   DOI
29 Corning, "Corning® SMF-28® ultra optical fiber," (Corning, Published date: November 2014), https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf (Accessed date: 15 February 2021)
30 W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, "Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering," Phys. Rev. Appl. 12, 044040 (2019).   DOI
31 I. H. Malitson, "Interspecimen comparison of the refractive index of fused silica," J. Opt. Soc. Am. 55, 1205-1209 (1965).   DOI
32 R. R. Willey, Field Guide to Optical Thin Films (SPIE Press, Bellingham, WA, USA, 2006).
33 R. H. Hadfield, "Single-photon detectors for optical quantum information applications," Nat. Photonics 3, 696-705 (2009).   DOI
34 S. Miki, M. Yabuno, T. Yamashita, and H. Terai, "Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector," Opt. Express 25, 6796-6804 (2017).   DOI
35 S. Chen, L. You, W. Zhang, X. Yang, H. Li, L. Zhang, Z. Wang, and X. Xie, "Dark counts of superconducting nanowire single-photon detector under illumination," Opt. Express 23, 10786-10793 (2015).   DOI
36 L. Gao, F. Lemarchand, and M. Lequime, "Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering," Opt. Express 20, 15734-15751 (2012).   DOI
37 T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, "Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications," J. Phys. D: Appl. Phys. 50, 025106 (2017).   DOI
38 I.-S. Lee, J.-W. Kim, C.-J. Youn, S.-K. Park, and Y.-B. Hahn, "Preparation and characterization of TiO2 thin films by PECVD on Si substrate," Korean J. Chem. Eng. 13, 473-477 (1996).   DOI
39 S. Krapick, M. Hesselberg, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, "Superconducting single-photon detectors with enhanced high-efficiency bandwidth," arXiv:1706.00004 (2017).