Browse > Article
http://dx.doi.org/10.4490/algae.2017.32.5.24

Physiological effects of copper on the freshwater alga Closterium ehrenbergii Meneghini (Conjugatophyceae) and its potential use in toxicity assessments  

Wang, Hui (Department of Biotechnology, Sangmyung University)
Sathasivam, Ramaraj (Department of Biotechnology, Sangmyung University)
Ki, Jang-Seu (Department of Biotechnology, Sangmyung University)
Publication Information
ALGAE / v.32, no.2, 2017 , pp. 131-137 More about this Journal
Abstract
Although green algae of the genus Closterium are considered ideal models for testing toxicity in aquatic ecosystems, little data about the effects of toxicity on these algal species is currently available. Here, Closterium ehrenbergii was used to assess the acute toxicity of copper (Cu). The median effective concentration ($EC_{50}$) of copper sulfate based on a dose response curve was $0.202mg\;L^{-1}$, and reductions in photosynthetic efficiency ($F_v/F_m$ ratio) of cells were observed in cultures exposed to Cu for 6 h, with efficiency significantly reduced after 48 h (p < 0.01). In addition, production of reactive oxygen species significantly increased over time (p < 0.01), leading to damage to intracellular organelles. Our results indicate that Cu induces oxidative stress in cellular metabolic processes and causes severe physiological damage within C. ehrenbergii cells, and even cell death; moreover, they clearly suggest that C. ehrenbergii represents a potentially powerful test model for use in aquatic toxicity assessments.
Keywords
chlorophyll fluorescence; Closterium ehrenbergii; copper; $EC_{50}$; reactive oxygen species;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, M. -A., Guo, R. & Ki, J. -S. 2014. Different transcriptional responses of heat shock protein 20 in the marine diatom Ditylum brightwellii exposed to metals and endocrine-disrupting chemicals. Environ. Toxicol. 29:1379-1389.   DOI
2 Lewis, M. A. 1995. Algae and vascular plant tests. In Rand, G. M. (Ed.) Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment. Taylor and Francis, Washington, DC, pp. 135-169.
3 Li, X., Ping, X., Xiumei, S., Zhenbin, W. & Liqiang, X. 2005. Toxicity of cypermethrin on growth, pigments, and superoxide dismutase of Scenedesmus obliquus. Ecotoxicol. Environ. Saf. 60:188-192.   DOI
4 Magdaleno, A., Velez, C. G., Wenzel, M. T. & Tell, G. 2013. Effects of cadmium, copper and zinc on growth of four isolated algae from a highly polluted Argentina river. Bull. Environ. Contam. Toxicol. 92:202-207.
5 Mamboya, F. A., Pratap, H. B., Mtolera, M. & Bjork, M. 1999. The effect of copper on the daily growth rate and photosynthetic efficiency of the brown macroalga Padina boergesenii. In Richmond, M. D. & Francis, J. (Eds.) Proceedings of the 20th Anniversary Conference on Advances on Marine Sciences in Tanzania, IMS/WIOMSA, Zanzibar, pp. 185-192.
6 Manimaran, K., Karthikeyan, P., Ashokkumar, S., Ashok Prabu, V. & Sampathkumar, P. 2012. Effect of copper on growth and enzyme activities of marine diatom, Odontella mobiliensis. Bull. Environ. Contam. Toxicol. 88:30-37.   DOI
7 OECD. 2006. OECD guidelines for the testing of chemicals. Test No. 201. Freshwater algal and cyanobacteria, growth inhibition test. OECD Publications, Paris, 25 pp.
8 Qian, H., Chen, W., Sheng, G. D., Xu, X., Liu, W. & Fu, Z. 2008. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris. Aquat. Toxicol. 88:301-307.   DOI
9 Sabatini, S. E., Juarez, A. B., Eppis, M. R., Bianchi, L., Luquet, C. M. & Rios de Molinaa, M. C. 2009. Oxidative stress and antioxidant defences in two green microalgae exposed to copper. Ecotoxicol. Environ. Saf. 72:1200-1206.   DOI
10 Qin, Y., Lu, M. & Gong, X. 2008. Dihydrorhodamine 123 is superior to 2,7-dichlorodihydrofluorescein diacetate and dihydrorhodamine 6G in detecting intracellular hydrogen peroxide in tumor cells. Cell Biol. Int. 32:224-228.   DOI
11 Sathasivam, R., Ebenezer, V., Guo, R. & Ki, J. -S. 2016. Physiological and biochemical responses of the freshwater green algae Closterium ehrenbergii to the common disinfectant chlorine. Ecotoxicol. Environ. Saf. 133:501-508.   DOI
12 Sato, M., Murata, Y., Mizusawa, M., Iwahashi, H. & Oka, S. -I. 2004. A simple and rapid dual-fluorescence viability assay for microalgae. Microbiol. Cult. Coll. 20:53-59.
13 Sbihi, K., Cherifi, O., El gharmali, A., Oudra, B. & Aziz, F. 2012. Accumulation and toxicological effects of cadmium, copper and zinc on the growth and photosynthesis of the freshwater diatom Planothidium lanceolatum (Brébisson) Lange-Bertalot: a laboratory study. J. Mater. Environ. Sci. 3:497-506.
14 Schreiber, U., Hormann, H., Neubauer, C. & Klughammer, C. 1995. Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust. J. Plant Physiol. 22:209-220.   DOI
15 Trampe, E., Kolbowski, J., Schreiber, U. & Kuhl, M. 2011. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging. Mar. Biol. 158:1667-1675.   DOI
16 U.S. Environmental Protection Agency. 1986. Environmental standards. General standards: General standards for discharge of environmental pollutant. Available from: http://ercmp.nic.in/Documents/GenEnvStandard.pdf. Accessed Apr 2, 2017.
17 Anton, F. A., Laborda, E. & Laborda, P. 1993. Acute toxicity of technical captan to algae and fish. Bull. Environ. Contam. Toxicol. 50:392-399.
18 Viana, S. M. & Rocha, O. 2005. The toxicity of copper sulphate and atrazine to the diatom Aulacoseira Granulata (Ehrenberg) Simmons. Acta Limnol. Bras. 17:291-300.
19 Watanabe, M. M., Kawachi, M., Hiroki, M. & Kasai, F. 2000. NIES collection list of strains. 6th ed. 2000 microalgae and protozoa. Microbial Culture Collections, National Institute for Environmental Studies, Tsukuba, 159 pp.
20 Young, R. G. & Lisk, D. J. 1972. Effect of copper and silver ions on algae. J. Water Pollut. Control Fed. 44:1643-1647.
21 Ebenezer, V., Lim, W. A. & Ki, J. -S. 2014. Effects of the algicides $CuSO_4$ and NaOCl on various physiological parameters in the harmful dinoflagellate Cochlodinium polykrikoides. J. Appl. Phycol. 26:2357-2365.   DOI
22 Cairns, J., Buikema, A. L., Heath, A. G. & Parker, B. C. 1978. Effects of temperature on aquatic organism sensitivity to selected chemicals. Bulletin 106. Virginia Water Resources Research Center, Blacksburg, VA, 88 pp.
23 Chen, H., Chen, J., Guo, Y., Wen, Y., Liu, J. & Liu, W. 2012. Evaluation of the role of the glutathione redox cycle in Cu (II) toxicity to green algae by a chiral perturbation approach. Aquat. Toxicol. 120-121:19-26.   DOI
24 Ebenezer, V. & Ki, J. -S. 2013. Quantification of the sub-lethal toxicity of metals and endocrine-disrupting chemicals to the marine green microalga Tetraselmis suecica. Fish. Aquat. Sci. 16:187-194.
25 Ferrat, L., Pergent-Martini, C. & Romeo, M. 2003. Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquat. Toxicol. 65:187-204.   DOI
26 Franklin, N. M., Stauber, J. L., Apte, S. C. & Lim, R. P. 2002. Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays. Environ. Toxicol. Chem. 21:742-751.   DOI
27 Guo, R., Lim, W. -A. & Ki, J. -S. 2016a. Genome-wide analysis of transcription and photosynthesis inhibition in the harmful dinoflagellate Prorocentrum minimum in response to the biocide copper sulfate. Harmful Algae 57:27-38.   DOI
28 Fukumoto, R. -H., Fujii, T. & Sekimoto, H. 1997. Detection and evaluation of a novel sexual pheromone that induces sexual cell division of Closterium ehrenbergii (Chlorophyta). J. Phycol. 33:441-445.   DOI
29 Giardi, M. T., Koblizek, M. & Masojidek, J. 2001. Photosystem II-based biosensors for the detection of pollutants. Biosens. Bioelectron. 16:1027-1033.   DOI
30 Guo, R., Ebenezer, V. & Ki, J. -S. 2014. PmMGST3, a novel microsomal glutathione S-transferase gene in the dinoflagellate Prorocentrum minimum, is a potential biomarker of oxidative stress. Gene 546:378-385.   DOI
31 Guo, R., Wang, H., Suh, Y. S. & Ki, J. -S. 2016b. Transcriptomic profiles reveal the genome-wide responses of the harmful dinoflagellate Cochlodinium polykrikoides when exposed to the algicide copper sulfate. BMC Genomics 17:29.   DOI
32 Ichimura, T. & Kasai, F. 1984. Post-zygotic isolation between allopatric mating groups of Closterium ehrenbergii Meneghini (Conjugatophyceae). Phycologia 23:77-85.   DOI
33 Kim, S. -G., Matsui, S. & Hamada, J. 1998. Toxicity test of anionic and nonionic surfactants to Closterium ehrenbergii by new indexes. J. Environ. Conserv. Eng. 27:274-281.   DOI
34 Ishikawa, T., Takeda, T., Shigeoka, S., Hirayama, O. & Mitsunaga, T. 1993. Hydrogen peroxide generation in organelles of Euglena gracilis. Phytochemistry 33:1297-1299.   DOI
35 Juneau, P., Sumitomo, H., Matsui, S., Itoh, S., Kim, S. -G. & Popovic, R. 2003. Use of chlorophyll fluorescence of Closterium ehrenbergii and Lemna gibba for toxic effect evaluation of sewage treatment plant effluent and its hydrophobic components. Ecotoxicol. Environ. Saf. 55:1-8.   DOI
36 Kim, J. -D., Kim, B. & Lee, C. -G. 2007. Alga-lytic activity of Pseudomonas fluorescens against the red tide causing marine alga Heterosigma akashiwo (Raphidophyceae). Biol. Control 41:296-303.   DOI
37 Knauert, S. & Knauer, K. 2008. The role of reactive oxygen species in copper toxicity to two freshwater green algae. J. Phycol. 44:311-319.   DOI
38 Lee, M. -A., Guo, R., Ebenezer, V. & Ki, J. -S. 2015. Evaluation and selection of reference genes for ecotoxicogenomic study of the green alga Closterium ehrenbergii using quantitative real-time PCR. Ecotoxicology 24:863-872.   DOI