Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.5.342

Microwave Dielectric Properties of Ultra-Low Temperature Co-firable Ba3V4O13-BaV2O6 Ceramics  

Yoon, Sang-Ok (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
Hong, Seoyoung (Department of Materials Engineering, Graduate School, Gangueung-Wonju National University)
Cho, Hyung-Hwan (Department of Materials Engineering, Graduate School, Gangueung-Wonju National University)
Kim, Shin (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.5, 2021 , pp. 342-347 More about this Journal
Abstract
Phase evolution, sintering behavior, microstructure, and microwave dielectric properties of (1-x) mol Ba3V4O13 - (x) mol BaV2O6 system were investigated. The sintered specimens of all compositions consisted of Ba3V4O13 and BaV2O6, and no secondary phase was observed. As x increased, the linear shrinkage decreased to the composition of x=0.5, and then increased again, implying that Ba3V4O13 and BaV2O6 phases interfered mutually with each other during sintering. All compositions showed a dense microstructure with a large grain growth. Cracks were observed in some compositions because of the relatively high sintering temperature of 620~640℃. As x increased, the dielectric constant increased, while the quality factor was maintained from about 50,000 GHz to about 70,000 GHz up to the composition of x=0.9, and then decreased to 20,987~27,180 GHz at the composition of x=1.0. As x increased, the temperature coefficient of the resonance frequency showed a (+) value from a (-) value. The dielectric constant, the quality factor, and the temperature coefficient of resonant frequency of x=0.7 composition sintered at 640℃ for 4 hours were 10.61, 71,126 GHz, and -4.9 ppm/℃, respectively. This composition showed a good chemical compatibility with Al powder, indicating that the Ba3V4O13-BaV2O6 ceramics are a candidate material for ULTCC (Ultra-Low Temperature Co-fired Ceramics) applications.
Keywords
ULTCC; Microwave; Dielectric constant; Quality factor; Temperature coefficient of the resonance frequency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. L. Gurevich and A. K. Tagantsev, Adv. Phys., 40, 719 (1991). [DOI: https://doi.org/10.1080/00018739100101552]   DOI
2 N. M. Alford and S. J. Penn, J. Appl. Phys., 80, 5895 (1996). [DOI: https://doi.org/10.1063/1.363584]   DOI
3 S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, J. Am. Ceram. Soc., 80, 1885 (1997). [DOI: https://doi.org/10.1111/j.1151-2916.1997.tb03066.x]   DOI
4 I. M. Reaney and D. Iddles, J. Am. Ceram. Soc., 89, 2063 (2006). [DOI: https://doi.org/10.1111/j.1551-2916.2006.01025.x]   DOI
5 M. T. Sebastian and H. Jantunen, Microwave Materials and Applications (Wiley, UK, 2017), pp. 355-425. [DOI: https://doi.org/10.1002/9781119208549.ch8]
6 W. Wersing, Curr. Opin. Solid State Mater. Sci., 1, 715 (1996). [DOI: https://doi.org/10.1016/S1359-0286(96)80056-8]   DOI
7 H. Ohsato, J. Ceram Soc. Jpn., 113, 703 (2005). [DOI: https://doi.org/10.2109/jcersj.113.703]   DOI
8 H. Yu, J. Liu, W. Zhang, and S. Zhang, J. Mater. Sci.: Mater. Electron., 26, 9414 (2015). [DOI: https://doi.org/10.1007/s10854-015-3282-y]   DOI
9 M. T. Sebastian, H. Wang, and H. Jantunen, Curr. Opin. Solid State Mater. Sci., 20, 151 (2016). [DOI: https://doi.org/10.1016/j.cossms.2016.02.004]   DOI
10 M. Valant and D. Suvorov, J. Am. Ceram. Soc., 84, 2900 (2001). [DOI: https://doi.org/10.1111/j.1151-2916.2001.tb01112.x]   DOI
11 Y. Deng, P. Yao, and B. Li, Mater. Lett., 285, 129125 (2021). [DOI: https://doi.org/10.1016/j.matlet.2020.129125]   DOI
12 M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, and J. H. Paik, J. Am. Ceram. Soc., 92, 3092 (2009). [DOI: https://doi.org/10.1111/j.1551-2916.2009.03324.x]   DOI
13 Phase Diagrams for Ceramist, Fig. 93-018 (The American Ceramic Society, 1969).
14 M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, and J. H. Paik, J. Am. Ceram. Soc., 93, 934 (2010). [DOI: https://doi.org/10.1111/j.1551-2916.2009.03504.x]   DOI
15 S. E. Kalathil, U. A. Neelakantan, and R. Ratheesh, J. Am. Ceram. Soc., 97, 1530 (2014). [DOI: https://doi.org/10.1111/jace.12802]   DOI
16 U. A. Neelakantan, S. E. Kalathil, and R. Ratheesh, Eur. J. Inorg. Chem., 2015, 305 (2015). [DOI: https://doi.org/10.1002/ejic.201402844]   DOI
17 ICDD (International Centre for Diffraction Data) #36-1466.
18 ICDD (International Centre for Diffraction Data) #49-0525.
19 W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd edn. (Wiley, New York, USA, 1976), p. 913.
20 J. Varhese, T. Siponkoski, M. Sobocinski, T. Vahera, and H. Jantunen, Appl. Mater. Interfaces, 10, 11048 (2018). [DOI: https://doi.org/10.1021/acsami.8b00978]   DOI