Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.3.223

HNS Detection Properties of Printed Ag:CNT Film as Liquid Sensor  

Ko, Dongwan (Major of Electronic Materials Engineering, Korea Maritime and Ocean University)
Choi, Junseck (Major of Electronic Materials Engineering, Korea Maritime and Ocean University)
Lee, Sangtae (Department of Offshore Plant Management, Korea Maritime and Ocean University)
Chang, Jiho (Major of Electronic Materials Engineering, Korea Maritime and Ocean University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.3, 2019 , pp. 223-228 More about this Journal
Abstract
We fabricated a printed Ag:CNT film as a liquid sensor for the detection of HNS (hazardous and noxious substances) in seawater. The paste required for printing was prepared using Ag powder, MWCNTs (multi-walled carbon nanotubes), and an organic binder. The heat treatment process for binder removal was optimized. In order to confirm that the sensor was operational, the resistance change characteristics in brine (3.5%) and methanol (99.8%) were assessed at $20^{\circ}C$. EDL (electrical double layer) formation and redox reactivity were confirmed as the most important reactions affect each electrical property of sensor in brine and methanol. From these results, it was determined that printed Ag:CNT film can be applied as a sensor to detect HNS in seawater.
Keywords
Ag; MWCNT; Screen printing; Liquid sensor; Hazardous and noxious substances;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. B. Lee, J. H. Yun, and S. T. Chung, Journal of Navigation and Port Research, 36, 857 (2012). [DOI: https://doi.org/10.5394/KINPR.2012.36.10.857]   DOI
2 ITOPF, Response to Marine Chemical Incidents, https://www.itopf.org/knowledge-resources/documents-guides/document/tip-17-response-to-marine-chemical-incidents/ (2014).
3 S. Lee, J. Y. Jung, M. Lee, and J. Chang, Sens. Mater., 29, 57 (2017). [DOI: https://doi.org/10.18494/SAM.2017.1375]   DOI
4 Q. Rong, Y. Zhang, C. Wang, Z. Zhu, J. Zhang, and Q. Liu, Sci. Rep., 7, 12110 (2017). [DOI: https://doi.org/10.1038/s41598-017-12337-z]   DOI
5 I. Cunha, S. Moreira, and M. M. Santos, J. Hazard. Mater., 285, 509 (2015). [DOI: https://doi.org/10.1016/j.jhazmat.2014.11.005]   DOI
6 J. Koo, S. H. Lee, S. M. Cho, and J. Chang, J. Korean Phys. Soc., 71, 335 (2017). [DOI: https://doi.org/10.3938/jkps.71.335]   DOI
7 K. Behler, S. Osswald, H. Ye, S. Dimovski, and Y. Gogotsi, J. Nanopart. Res., 8, 615 (2006). [DOI: https://doi.org/10.1007/s11051-006-9113-6]   DOI
8 T. Kim, S. Kwon, H. Yoon, C. Chung, and J. Kim, Colloids Surf., A, 313, 448 (2008). [DOI: https://doi.org/10.1016/j.colsurfa.2007.04.136]   DOI
9 M. L. DeJong, Phys. Teach., 35, 286 (1997). [DOI: https://doi.org/10.1119/1.2344686]   DOI
10 S. Lee, S. Cho, C. Kim, H. Kim, H. Yang, J. Oh, and J. Chang, J. Korean Soc. Mar. Eng., 40, 325 (2016). [DOI: https://doi.org/10.5916/jkosme.2016.40.4.325]   DOI
11 M. B. Heaney, Electrical Conductivity and Resistivity, https://www.researchgate.net/publication/309188334_Electrical_Conductivity_and_Resistivity (2003).
12 L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 38, 2520 (2009). [DOI: https://doi.org/10.1039/b813846j]   DOI