Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.2.80

Study on Surface Plasmon Electrode Using Metal Nano-Structure for Maximizing Sterilization of Dielectric Discharge  

Ki, Hyun-Chul (Photonics Energy Research Center, Korea Photonics Technology Institute)
Oh, Byeong-Yun (ZeSHTech Co., Ltd)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.2, 2018 , pp. 80-84 More about this Journal
Abstract
In this study, we investigated plasmon effects to maximize the sterilization of dielectric discharge. We predicted the effect using the finite difference time domain (FDTD) method as a function of electrode shape, size, and period. The structure of the electrode was designed with a thickness of 100 nm of silver nanoparticles on a glass substrate, and was varied according to the shape, size, and period of the electrode hole. Based on the results, it was confirmed that the effect of plasmons was independent of the shape of the electrode hole. It was thus confirmed that the plasmon effect depended only on the size and period of the holes. Further, the plasmon effect was affected by the size rather than period of the holes. Because the absorption of light by the metal varied according to the size of the hole, the plasmon effect generated by the absorption of light also varied. The best results were obtained when the radius and period of the electrode holes were $0.1{\mu}m$ and $0.4{\mu}m$, respectively.
Keywords
Dielectric discharge; Plasma; Plasmon; Nano structure; Hole;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. S. Kim and Y. S. Park, Korean Journal of Environmental Health Sciences, 37, 218 (2011). [DOI: https://doi.org/10.5668/jehs.2011.37.3.218]   DOI
2 H. S. Uhm, Appl. Sci. Convergence Technol., 15, 117 (2006).
3 R. Brandenburg, J. Ehlbeck, M. Stieber, T. v. Woedtke, J. Zeymer, O. Schluter, and K. D. Weltmann, Contrib. Plasma Phys., 47, 72 (2007). [DOI: https://doi.org/10.1002/ctpp.200710011]   DOI
4 K. D. Weltmann, R. Brandenburg, T. von Woedtke, J. Ehlbeck, R. Foest, M. Stieber, and E. Kindel, J. Phys. D: Appl. Phys., 41, 194008 (2008). [DOI: https://doi.org/10.1088/0022-3727/41/19/194008]   DOI
5 G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, Plasma Processes Polym., 5, 503 (2008). [DOI: https://doi.org/10.1002/ppap.200700154]   DOI
6 M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, Sens. Actuators, B, 90, 236 (2003). [DOI: https://doi.org/10.1016/S0925-4005(03)00034-0]   DOI
7 L. K. Chau, Y. F. Lin, S. F. Cheng, and T. J. Lin, Sens. Actuators, B, 113, 100 (2006). [DOI: https://doi.org/10.1016/j.snb.2005.02.034]   DOI
8 J. Homola, Chem. Rev., 108, 462 (2008). [DOI: https://doi.org/10.1021/cr068107d]   DOI
9 M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev., 108, 494 (2008). [DOI: https://doi.org/10.1021/cr068126n]   DOI
10 E. Hutter and J. H. Fendler, Adv. Mater., 16, 1685 (2004). [DOI: https://doi.org/10.1002/adma.200400271]   DOI
11 W. Knoll, Annu. Rev. Phys. Chem., 49, 569 (1998). [DOI: https://doi.org/10.1146/annurev.physchem.49.1.569]   DOI