Browse > Article
http://dx.doi.org/10.5229/JKES.2019.22.1.22

Research Trend on Conversion Reaction Anodes for Sodium-ion Batteries  

Kim, Suji (Sookmyung Women's University)
Kim, You Jin (Sookmyung Women's University)
Ryu, Won-Hee (Sookmyung Women's University)
Publication Information
Journal of the Korean Electrochemical Society / v.22, no.1, 2019 , pp. 22-35 More about this Journal
Abstract
Development of low cost rechargeable batteries has been considered as a significant task for future large-scale energy storage units (i.e. electric vehicles, smart grids). Sodium-ion batteries (SIBs) have been recognized as a promising alternative to replace conventional lithium-ion batteries (LIBs) because of their abundancy and economic benign. Nevertheless, Na ions have larger ionic radius than that of Li ions, resulting in sluggish transport of Na ions in electrodes for cell operation. There have been efforts to seek suitable anode materials for the past years operated based on three different kinds of reaction mechanism (intercalation, alloy reaction, and conversion reaction). In this review, we introduce a class of conversion reaction anode materials for Na-ion batteries, which have been reported.
Keywords
Sodium-Ion Batteries; Anode Materials; Conversion Reaction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Liu, Y. et al. WS2Nanowires as a High-Performance Anode for Sodium-Ion Batteries. Chemistry - A European Journal 21, 11878-11884 (2015).   DOI
2 Choi, S. H. & Kang, Y. C. Sodium ion storage properties of WS2-decorated three-dimensional reduced graphene oxide microspheres. Nanoscale 7, 3965-3970 (2015).   DOI
3 Wang, X. et al. (002)-oriented WS2 with high crystalline with enhanced capacity as anode material for sodium ion batteries. Journal of Alloys and Compounds 696, 22-27 (2017).   DOI
4 Hou, H., Qiu, X., Wei, W., Zhang, Y. & Ji, X. Carbon Anode Materials for Advanced Sodium-Ion Batteries. Adv Energy Mater 7, 1602898 (2017).   DOI
5 Yang, J., Zhou, X., Wu, D., Zhao, X. & Zhou, Z. S-Doped N-Rich Carbon Nanosheets with Expanded Interlayer Distance as Anode Materials for Sodium-Ion Batteries. Advanced Materials 29, 1604108 (2017).   DOI
6 Jian, Z. et al. Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode. Chemistry of Materials 29, 2314-2320 (2017).   DOI
7 Cao, Y. et al. Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications. Nano Letters 12, 3783-3787 (2012).   DOI
8 Chen, C. et al. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6 (2015).
9 Xiong, H., Slater, M. D., Balasubramanian, M., Johnson, C. S. & Rajh, T. Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries. The Journal of Physical Chemistry Letters 2, 2560-2565 (2011).   DOI
10 Wu, L. et al. Unfolding the Mechanism of Sodium Insertion in Anatase TiO2Nanoparticles. Adv Energy Mater 5, 1401142 (2015).   DOI
11 Xu, H. et al. Boosting sodium storage properties of titanium dioxide by a multiscale design based on MOFderived strategy. Energy Storage Mater 17, 126-135 (2019).   DOI
12 Hwang, J.-Y. et al. Carbon-Free TiO2 Microspheres as Anode Materials for Sodium Ion Batteries. Acs Energy Lett, 494-501 (2019).
13 Wahid, M., Puthusseri, D., Gawli, Y., Sharma, N. & Ogale, S. Hard Carbons for Sodium-Ion Battery Anodes: Synthetic Strategies, Material Properties, and Storage Mechanisms. ChemSusChem 11, 506-526 (2018).   DOI
14 Kim, J.-H. & Kim, D. K. Conversion-Alloying Anode Materials for Na-ion Batteries: Recent Progress, Challenges, and Perspective for the Future. Journal of the Korean Ceramic Society 55, 307-324 (2018).   DOI
15 Ryu, W.-H. et al. Heterogeneous WSx/WO3 Thorn-Bush Nanofiber Electrodes for Sodium-Ion Batteries. Acs Nano 10, 3257-3266 (2016).   DOI
16 Shadike, Z., Cao, M.-H., Ding, F., Sang, L. & Fu, Z.-W. Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries. Chem Commun 51, 10486-10489 (2015).   DOI
17 Li, X. et al. Mo 2 C/N-doped carbon nanowires as anode materials for sodium-ion batteries. Materials Letters 194, 30-33 (2017).   DOI
18 Zheng, Y. et al. Boosted Charge Transfer in SnS/SnO2 Heterostructures: Toward High Rate Capability for Sodium-Ion Batteries. Angewandte Chemie 128, 3469-3474 (2016).   DOI
19 Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat Nanotechnol 9, 682-686 (2014).   DOI
20 Irisarri, E., Ponrouch, A. & Palacin, M. R. Review-Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries. J Electrochem Soc 162, A2476-A2482 (2015).   DOI
21 Dou, X. et al. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater Today (2019).
22 Prabakar, S. J. R., Jeong, J. & Pyo, M. Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries. Electrochim Acta 161, 23-31 (2015).   DOI
23 Balogun, M.-S., Luo, Y., Qiu, W., Liu, P. & Tong, Y. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98, 162-178 (2016).   DOI
24 Luo, W. et al. Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent. Acs Appl Mater Inter 7, 2626-2631 (2015).   DOI
25 Wang, L. P., Yu, L., Wang, X., Srinivasan, M. & Xu, Z. J. Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A 3, 9353-9378 (2015).   DOI
26 Chevrier, V. L. & Ceder, G. Challenges for Na-ion Negative Electrodes. J Electrochem Soc 158, A1011 (2011).   DOI
27 Kim, S.-W., Seo, D.-H., Ma, X., Ceder, G. & Kang, K. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv Energy Mater 2, 710-721 (2012).   DOI
28 Kim, Y., Ha, K.-H., Oh, S. M. & Lee, K. T. High-Capacity Anode Materials for Sodium-Ion Batteries. Chemistry - A European Journal 20, 11980-11992 (2014).   DOI
29 Rudola, A., Saravanan, K., Mason, C. W. & Balaya, P. Na2Ti3O7: an intercalation based anode for sodium-ion battery applications. Journal of Materials Chemistry A 1, 2653 (2013).   DOI
30 Li, Z., Ding, J. & Mitlin, D. Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. Accounts of Chemical Research 48, 1657-1665 (2015).   DOI
31 Xiao, L. et al. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun 48, 3321 (2012).   DOI
32 Edison, E., Sreejith, S., Lim, C. T. & Madhavi, S. Beyond intercalation based sodium-ion batteries: the role of alloying anodes, efficient sodiation mechanisms and recent progress. Sustain Energ Fuels 2, 2567-2582 (2018).   DOI
33 Chen, L. et al. Readiness Level of Sodium-Ion Battery Technology: A Materials Review. Adv Sustain Syst 2, 1700153 (2018).   DOI
34 Ryu, W.-H., Jung, J.-W., Park, K., Kim, S.-J. & Kim, I.-D. Vine-like MoS2anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries. Nanoscale 6, 10975-10981 (2014).   DOI
35 Wu, C., Dou, S.-X. & Yu, Y. The State and Challenges of Anode Materials Based on Conversion Reactions for Sodium Storage. Small 14, 1703671 (2018).   DOI
36 Hasa, I., Verrelli, R. & Hassoun, J. Transition metal oxide-carbon composites as conversion anodes for sodium-ion battery. Electrochim Acta 173, 613-618 (2015).   DOI
37 Rahman, M. M., Glushenkov, A. M., Ramireddy, T. & Chen, Y. Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. Chem. Commun. 50, 5057-5060 (2014).   DOI
38 Liu, X. et al. $Fe_2O_3$ -reduced graphene oxide composites synthesized via microwave-assisted method for sodium ion batteries. Electrochim Acta 166, 12-16 (2015).   DOI
39 Li, D., Zhou, J., Chen, X. & Song, H. Amorphous Fe2O3/Graphene Composite Nanosheets with Enhanced Electrochemical Performance for Sodium-Ion Battery. Acs Appl Mater Inter 8, 30899-30907 (2016).   DOI
40 Liu, Y. et al. Mesoporous Co 3 O 4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. J Power Sources 273, 878-884 (2015).   DOI
41 Li, T. et al. In Situ Grown Fe2O3 Single Crystallites on Reduced Graphene Oxide Nanosheets as High Performance Conversion Anode for Sodium-Ion Batteries. ACS Appl Mater Inter 9, 19900-19907 (2017).   DOI
42 Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nature Materials 16, 16-22 (2017).   DOI
43 Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry 7, 19-29 (2014).   DOI
44 Hwang, J.-Y., Myung, S.-T. & Sun, Y.-K. Sodium-ion batteries: present and future. Chemical Society Reviews 46, 3529-3614 (2017).   DOI
45 Klein, F., Pinedo, R., Berkes, B. B., Janek, J. & Adelhelm, P. Kinetics and Degradation Processes of CuO as Conversion Electrode for Sodium-Ion Batteries: An Electrochemical Study Combined with Pressure Monitoring and DEMS. The Journal of Physical Chemistry C 121, 8679-8691 (2017).   DOI
46 Santangelo, S. et al. Electro-spun $Co_3O_4$ anode material for Na-ion rechargeable batteries. Solid State Ionics 309, 41-47 (2017).   DOI
47 Li, H.-H. et al. Shale-like Co3O4 for high performance lithium/sodium ion batteries. Journal of Materials Chemistry A 4, 8242-8248 (2016).   DOI
48 Yuan, S. et al. Engraving Copper Foil to Give Large-Scale Binder-Free Porous CuO Arrays for a High-Performance Sodium-Ion Battery Anode. Adv Mater 26, 2273-2279 (2014).   DOI
49 Zhou, Q. et al. Co3S4@polyaniline nanotubes as highperformance anode materials for sodium ion batteries. J Mater Chem A 4, 5505-5516 (2016).   DOI
50 Wang, J. et al. An Advanced MoS2/Carbon Anode for High-Performance Sodium-Ion Batteries. Small 11, 473-481 (2015).   DOI
51 Su, D., Dou, S. & Wang, G. Ultrathin MoS2Nanosheets as Anode Materials for Sodium-Ion Batteries with Superior Performance. Adv Energy Mater 5, 1401205 (2015).   DOI
52 Slater, M. D., Kim, D., Lee, E. & Johnson, C. S. Sodium-Ion Batteries. Adv Funct Mater 23, 947-958 (2013).   DOI
53 Hu, M. et al. Reversible Conversion-Alloying of Sb2O3 as a High-Capacity, High-Rate, and Durable Anode for Sodium Ion Batteries. ACS Appl Mater Inter 6, 19449-19455 (2014).   DOI
54 Zhang, Z. et al. Facile synthesis of Sb2S3/MoS2 heterostructure as anode material for sodium-ion batteries. Nanotechnology 29, 335401 (2018).   DOI
55 Jiang, Y. et al. Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 5, 60-66 (2014).   DOI
56 Wen, Y. et al. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5 (2014).
57 Sun, R. et al. Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery. Acs Appl Mater Inter 7, 20902-20908 (2015).   DOI
58 Luo, W. et al. Na-Ion Battery Anodes: Materials and Electrochemistry. Accounts Chem Res 49, 231-240 (2016).   DOI
59 Zhao, Q., Lu, Y. & Chen, J. Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries. Adv Energy Mater 7, 1601792 (2017).   DOI
60 Wang, L. et al. Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Mater 16, 434-454 (2019).   DOI
61 Kubota, K. & Komaba, S. Review-Practical Issues and Future Perspective for Na-Ion Batteries. Journal of The Electrochemical Society 162, A2538-A2550 (2015).   DOI
62 Yoo, H. D., Markevich, E., Salitra, G., Sharon, D. & Aurbach, D. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17, 110-121 (2014).   DOI