Browse > Article
http://dx.doi.org/10.5229/JKES.2016.19.3.101

Electrochemical Properties of Ionic Liquid Composite Poly(ethylene oxide)(PEO) Solid Polymer Electrolyte  

Park, Ji-Hyun (Department of Solar & Energy Engineering, Cheongju University)
Kim, Jae-Kwang (Department of Solar & Energy Engineering, Cheongju University)
Publication Information
Journal of the Korean Electrochemical Society / v.19, no.3, 2016 , pp. 101-106 More about this Journal
Abstract
In this study, we prepared an ionic liquid composite solid polymer electrolyte (PEO-LiTFSI-$Pyr_{14}TFSI$) with poly(ethylen oxide), lithium bis(trifluoromethanesulfonyl)imide, N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide by blending-cross linking process. Although the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte displayed a small peak at 4.4 V, it had high electrochemical oxidation stability up to 5.7 V. Ionic conductivity of the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte increased with increasing temperature from $10^{-6}S\;cm^{-1}$ at $30^{\circ}C$ to $10^{-4}S\;cm^{-1}$ at $70^{\circ}C$. To investigate the electrochemical properties, the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte assembled with $LiFePO_4$ cathode and Li-metal anode. At 0.1 C-rate, the cell delivered $40mAh\;g^{-1}$ for $30^{\circ}C$, $69.8mAh\;g^{-1}$ for $40^{\circ}C$ and $113mAh\;g^{-1}$ for $50^{\circ}C$, respectively. The PEO-LiTFSI-$Pyr_{14}TFSI$ solid polymer electrolyte exhibited good charge-discharge performance in Li/SPE/$LiFePO_4$ cells at $50^{\circ}C$.
Keywords
ionic liquid; poly(ethylen oxide); thermal stability; lithium polymer battery;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. Kalhoff, G. G. Eshetu, D. Bresser, and S. Passerini, 'Safer electrolytes for lithium-ion batteries: State of the art and perspectives' ChemSusChem, 8, 2154 (2015).   DOI
2 D. H. Kim and S. W. Ryu, 'Synthesis and physicochemical properties of branched solid polymer electrolytes containing ethylene carbonate group' J. the Korean Electrochem. Soc., 18, 150 (2015).   DOI
3 M. Wetjen, G. T. Kim, M. Joost, G. B. Appetecchi, M. Winter, and S. Passerini, 'Thermal and electrochemical properties of $PEO-LiTFSI-Pyr_{14}TFSI$-based composite cathodes, incorporating 4 V-class cathode active materials' J. Power Sources, 246, 846 (2014).   DOI
4 J. H. Shin, W. A. Henderson, C. Tizzani, S. Passerini, S. S. Jeong, and K. W. Kim, 'Characterization of Solvent-Free Polymer Electrolytes Consisting of Ternary $PEO-LiTFSI-PYR_{14}TFSI$' J. Electrochem. Soc., 153, A1649 (2006).   DOI
5 G. B. Appetecchi, M. Carewska, F. Alessandrini, P. P. Prosini, and S. Passerin, 'Characterization of PEO-based composite cathodes. I. Morphological, thermal, mechanical, and electrical properties' J. Electrochem. Soc., 147, 451 (2000).   DOI
6 J. K. Kim, L. Niedzicki, J. Scheers, C. R. Shin, D. H. Lim, W. Wieczorek, P. Johansson, J. H. Ahn, A. Matic, and P. Jacobsson, 'Characterization of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide-based polymer electrolytes for high safety lithium batteries' J. Power Sources, 224, 93 (2013).   DOI
7 G. B. Appetecchi, M. Montanino, D. Zane, M. Carewska, F. Alessandrini, and S. Passerini, 'Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquids' Electrochim. Acta, 54, 1325 (2009).   DOI
8 P. D. S. Claire, 'Degradation of PEO in the solid state: a theoretical kinetic model' Macromolecules, 42, 3469 (2009).   DOI
9 G. B. Appetecchi, J. Hassoun, B. Scrosati, F. Croce, F. Cassel, and M. Salomon, 'Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state $Li/LiFePO_4$ polymer batteries' J. Power Sources, 124, 246, (2003).   DOI
10 J. K. Kim, D. H. Lim, J. Scheers, J. Pitawala, S. Wilken, P. Johansson, J.H. Ahn, A. Matic, and P. Jacobsson, 'Properties of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl) imide based electrolytes as a function of lithium bis(trifluoromethanesulfonyl) imide doping' J. the Korean Electrochem. Soc., 14, 92 (2011).   DOI
11 A. Lahiri, N. Borisenko, A. Borodin, M. Olschewski, and F. Endres, 'Characterisation of the solid electrolyte interface during lithiation/delithiation of germanium in an ionic liquid' PhysChemChemPhys., 18, 5630 (2016).
12 Y. J. Lim, H. W. Kim, S. S. Lee, H. J. Kim, J. K. Kim, Y. G. Jung, and Y. Kim, 'Ceramic-based composite solid electrolyte for lithium-ion batteries' ChemPlusChem, 80, 1100 (2015).   DOI
13 P. P. Prosini, M. Carewska, F. Alessandrino, and S. Passerini, 'The two-phase battery concept: a new strategy for high performance lithium polymer batteries' J. Power Sources, 97-98, 786 (2001).   DOI
14 S. Matsui, T. Muranaga, H. Higobashi, S. Inoue, and T. Sakai, 'Liquid-free rechargeable Li polymer battery' J. Power Sources, 97, 772 (2001).
15 Y. H. Kim, G. Cheruvally, J. W. Choi, J. H. Ahn, K. W. Kim, H. J. Ahn, D. S. Choi, and C. E. Song, 'Electrochemical properties of PEO-based polymer electrolytes blended with different room temperature ionic liquids' Macromol. Symp., 249-250, 183 (2007).