Browse > Article
http://dx.doi.org/10.6564/JKMRS.2010.14.1.009

A Systematic Study on MR Contrast Agents for Constructing Specific Relaxation Times  

Cho, Jang-Geun (Department of Chemistry, Chung-Ang University)
Cho, Jee-Hyun (Department of Chemistry, Chung-Ang University)
Lee, Chul-Hyun (MRI team, Korea Basic Science Institute)
Ahn, Sang-Doo (Department of Chemistry, Chung-Ang University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.14, no.1, 2010 , pp. 9-17 More about this Journal
Abstract
The water proton relaxation rates increase linearly with concentrations of contrast agents, and could be expressed as a function of the concentrations. In this paper, we have investigated MR properties of two different contrast agents, $GdCl_3$ and $CoCl_2$. Relaxivity coefficients were calculated from individual contrast agent solutions, and used for predicting relaxation rates at mixtures of two contrast agents. From the experimental results, we have discussed the feasibility of constructing water solutions with the desired relaxation times using specific mixtures of contrast agents.
Keywords
Contrast agent; $T_1$ relaxation time; $T_2$ relaxation time; $GdCl_3$; $CoCl_2$; MRI;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 99, 2293-2352,(1999)   DOI
2 R. B. Lauffer, Chem. Rev. 87, 901-927, (1987).   DOI
3 J. L. Barnhart, R. N. Berk, Invest. Radiol. 21, 132–136, (1986).   DOI
4 M. J. Quast, H. Neumeister, E. L. Ezell, B. U. Budelmann, Magn. Reson. Med. 45, 575–579, (2001).   DOI
5 G. Otting, Journal of Progress in Nuclear Magnetic Resonance Spectroscopy 31, 259-285, (1997).   DOI
6 N. Matubayasi, C. Wakai, M. Nakahara, Phys. Rev. Letters 78, 2573-2576, (1997).   DOI
7 M. Marzelli, K. Fischer, Y. B. Kim, R. V. Mulkern, S.-S. Yoo, H. Park, Z.-H. Cho, Int. J. Imaging Syst. Technol. 18, 79-84, (2008).   DOI
8 X.-A. MAO, C.-H. YE, Concepts Magn. Reson. 9, 173-187, (1997).   DOI
9 S. Lusse, K. Arnold, Macromolecules 29, 4251-4257, (1996).   DOI
10 W. S. Warren, S. L. Hammes, J. L. Bates, J. Chem. Phys. 91, 5895-5904, (1989).   DOI
11 K.-C. Chung, S. Ahn, J. Kor. Magn. Reson. Soc. 10, 46-58, (2006).
12 H. Y. Carr, E. M. Purcell, Phys. Rev. 94, 630–638, (1954).   DOI
13 S. Meiboom, D. Gill, Rev. Sci. Instr. 29, 688–691, (1958).   DOI
14 S. H. Koenig, K. E. Kellar, Acad. Radiol. 3, S273-S276, (1996).   DOI
15 D.F. Hansen, H. Feng, Z. Zhou, Y. Bai, L.E. Kay, J. Am. Chem. Soc. 131, 16257-16265, (2009).   DOI
16 P. E. Sunde, B. J. Halle, Am. Chem. Soc. 131, 18214–18215, (2009).   DOI
17 K.H. Chalmers, E. De Luca, N.H. Hogg, A.M. Kenwright, I. Kuprov, D. Parker, M.Botta, J.I. Wilson, A.M. Blamire, Chem. Eur. J. 16, 134–148, (2010).   DOI
18 S. Dahlin, B. Reinhammar, J. Angstrom, Biochemistry 28, 7224–7233, (1989).   DOI
19 J. E. Kirsch, Top. Magn. Reson. Imaging 1-18, (1991)
20 D. Lee, V. Vijayan, P. Montaville, S. Becker, C. Grieginger, J. Kor. Magn. Reson. Soc.13, 15-26, (2009).   DOI
21 C. Burtea, S. L. Laurent, V. Elst, R. N. Muller, Handbook of Experimental Pharmacology 135-165. (2008)
22 F.-M. Eduardo, C. Juan, N.-C. Ramon, R. Ricardo, J. Am. Chem. Soc. 129, 15164-15173, (2007).   DOI
23 H.B. Na, J.H. Lee, K. An, Y.I. Park, M. Park, I.S. Lee, D.H. Nam, S.T. Kim , S.H.Kim, S.W. Kim, K.H. Lim, K.S. Kim, S.O. Kim, T. Hyeon, Angew. Chem. Int. Ed. Engl. 46 , 5397-5401, (2007).   DOI
24 J.-H. Lee, Y.-M. Huh, Y.-w. Jun, J.-w. Seo, J.-t. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh, Cheon, J. Nat. Med. 13, 95-99, (2007).   DOI
25 A. A. Neves, A. S. Krishnan, M. I. Kettunen, D.-E. Hu, M. M. De Backer, B.Davletov, K. M. Brindle, Nano Lett. 7 , 1419-1423 (2007)   DOI