Browse > Article
http://dx.doi.org/10.5012/jkcs.2012.56.4.431

Dissipative Particle Dynamics Simulation on the Formation Process of CeO2 Nanoparticles in Alcohol Aqueous Solutions  

Zhang, Qi (School of Petrochemical Engineering, Jiangsu Province Key Lab of Fine Petrochemical Engineering, Changzhou University)
Zhong, Jing (School of Petrochemical Engineering, Jiangsu Province Key Lab of Fine Petrochemical Engineering, Changzhou University)
Yang, Bao-Zhu (School of Petrochemical Engineering, Jiangsu Province Key Lab of Fine Petrochemical Engineering, Changzhou University)
Huang, Wei-Qiu (School of Petrochemical Engineering, Jiangsu Province Key Lab of Fine Petrochemical Engineering, Changzhou University)
Chen, Ruo-Yu (School of Petrochemical Engineering, Jiangsu Province Key Lab of Fine Petrochemical Engineering, Changzhou University)
Liao, Jun-Min (Department of Chemistry, National Sun Yat-sen University)
Gu, Chi-Ruei (Department of Chemistry, National Sun Yat-sen University)
Chen, Cheng-Lung (Department of Chemistry, National Sun Yat-sen University)
Publication Information
Abstract
Dissipative particle dynamics (DPD) was carried out to study the nucleation and crystal growth process of $CeO_2$ nanoparticles in different alcohol aqueous solutions. The results showed that the nucleation and crystal growth process of $CeO_2$ can be classified into three stages: nuclei growth, crystal stabilization and crystal aggregation except the initial induction stage, which could be reproduced by collecting simulation results after different simulation time. Properly selecting the sizes of $CeO_2$ and water bead was crucial in the simulation system. The influence of alcohol type and content in solutions, and precipitation temperature on the particle dimension were investigated in detail and compared with the experimental results. The consistency between simulation results and experimental data verify that the simulation can reproduce the macroscopic particle aggregation process. The effect of solvent on the nucleation and crystal growth of $CeO_2$ nanoparticles are different at three stages and can not be simply described by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or nucleation thermodynamics theory. Our work demonstrated that DPD methods can be applied to study nanoparticle forming process.
Keywords
Dissipative particle dynamics; $CeO_2$ Particle dimension; Alcohol content; Precipitation temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lisal, M.; Brennan, J. K.; Smith, W. R. J. Chem. Phys. 2006, 125, 164905.   DOI
2 Hoogerbrugge, P.; Koolman, J. Europhys. Lett. 1992, 19, 155.   DOI
3 Chen, Y.; Zhong, J.; Huang, W. Q.; Chen, R. Y.; Hu, W. H.; Chen, C.-L. Chem. J. Chinese Universities 2010, 31, 1827.
4 Juan, S. C. C.; Hua, C. Y.; Chen, C. L.; Sun, X. Q.; Xi, H. T. Mol. Simul. 2005, 31, 277.   DOI
5 Groot, R. D.; Warren, P. B. J. Chem. Phys. 1997, 107, 4423.   DOI   ScienceOn
6 Mullin, J. W. Crystallization; Butterworth-heinemann: Boston, U.S.A., 1993.
7 Bicerano, J. Prediction of Polymer Properties, 2nd ed.; Marcel Dekker: New York, 1996.
8 Flory, P. Principles of Polymer Chemistry; Cornell University Press: Ithaca, 1953.
9 Materials Studio 4.2; Discover/Accelrys: San Diego, CA, 2007.
10 Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.   DOI
11 Frisch, M. J.; Trucks, G. W.; etc. GAUSSIAN 03 revision D.02; Gaussian, Inc.: Wallingford, CT, 2004.
12 Ryjkitia, E.; Kuhn, H.; Rehage, H.; Muller, F.; Peggau, J. Angew. Chem. Int. Ed. 2002, 41, 983.   DOI
13 Kuo, M. Y.; Yang, H. C.; Hua, C. Y.; Mao, S. Z.; Deng, F.; Wang, W. W.; Du, Y. R. Chem. Phys. Chem. 2004, 5, 575.   DOI
14 Zhow, Y.; Philips, R. J.; Switzer, J. A. J. Am. Ceram. Soc. 1995, 78, 981.   DOI
15 Djuricic , B.; Pickering, S. J. Eur. Ceram. Soc. 1999, 19, 1925.   DOI
16 Zhou, X. D.; Huebner, W.; Anderson, H. U. Chem. Mater. 2003, 15, 378.   DOI
17 Li, Q.; Han, Z. H.; Shao, M. W.; Liu, X. M.; Qian, Y. T. J. Phys. Chem. Solids 2003, 64, 295.   DOI
18 Chen, J. Q.; Chen, Z. G.; Li, J. C. J. Mater. Sci. Technol. 2004, 20, 438.
19 Chen, H. I.; Chang, H. Y. Colloids Surf., A 2004, 242, 61.   DOI   ScienceOn
20 Chen, H. I.; Chang, H. Y. Ceram. Int. 2005, 31, 792.
21 Li, X. Z.; Chen, Z. G.; Chen, J. Q.; Chen, Y.; Ni, C. Y. J. Rare Earths 2005, 23, 321.
22 Conesa, J. C. Surf. Sci. 1995, 339, 337.   DOI
23 Li, X. Z.; Chen, Y.; Chen, Z. G.; Chen, J. Q. Electronic Components & Materials 2006, 25, 43.
24 Chen, P. L.; Chen, I. W. J. Am. Ceram. Soc. 1993, 76, 1577.   DOI   ScienceOn
25 Hu, M. Z. C.; Payzant, E. A.; Byers, C. H. J. Colloid Interface Sci. 2002, 222, 20.
26 Gotte, A.; Hermansson, K.; Baudin, M. Surf. Sci. 2004, 552, 273.   DOI
27 Baudin, M.; Wójcik, M.; Hermansson, K. Surf. Sci. 2000, 468, 51.   DOI
28 Cao, X. R.; Xu, G. Y.; Li, Y. M.; Zhang, Z. J. Phys. Chem. A 2005, 109, 10418.   DOI
29 Liu, H.; Qian, H. J.; Zhao, Y.; Lu, Z. Y. J. Chem. Phys. 2007, 127, 144903.   DOI
30 Soto-Figueroa, C.; Vicente, L.; Martinez-Magadan, J.; Rodriguex-Hidalgo, M. J. Phys. Chem. B 2007, 111, 11756.   DOI
31 Yamashita, M.; Kameyama, K.; Yoshida, S.; FUjishiro, Y.; Kawai, T.; Sato, T. J. Mater. Sci. 2002, 37, 683.   DOI
32 Izu, N.; Shin, W.; Murayama, N.; Kanzaki, S.; Sensors and Actuator B: Chemical 2002, 87, 95.   DOI   ScienceOn
33 Yahiro, H.; Baba, Y.; Eguchi, K.; Arai, H. J. Electrochem. Soc. 1988, 135, 2077.   DOI   ScienceOn
34 Kaspar, J.; Fornasiero, P.; Hickey, N. Catal. Today 2003, 77, 419.   DOI   ScienceOn
35 Jiang, M.; Wood, N. D.; Komanduri, R. J. Eng. Mater. Technol. (Trans. ASME) 1998, 120, 304.   DOI
36 Zhou, X. D.; Huebner, W.; Anderson, H. U. Appl. Phys. Lett. 2002, 80, 3814.   DOI
37 Chu, X.; Chung, W.; Schmidt, L. D. J. Am. Ceram. Soc. 1993, 76, 2115.   DOI   ScienceOn
38 Hirano, M.; Kato, E. J. Am. Ceram. Soc. 1999, 82, 786.
39 Hsu, W. P.; Ronnquist, L.; Matijevic, E. Langumir 1988, 4, 31.   DOI
40 Masui, T.; Fujiwara, K.; Machida, K. I.; Adachi, G. Y.; Sakata, T.; Mori, H. Chem. Mater. 1997, 9, 2197.   DOI