Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.9.2613

Chlorine Effect on Thermal Aging Behaviors of BR and CR Composites  

Choi, Sung-Seen (Department of Chemistry, Sejong University)
Kim, Jong-Chul (Department of Chemistry, Sejong University)
Publication Information
Abstract
Chloroprene is a chlorine substituent of 1,3-butadiene. Butadiene rubber (BR) and chloroprene rubber (CR) composites were thermally aged at 60, 70, 80, and $90^{\circ}C$ for 2 - 185 days in a convection oven and changes of the crosslink densities by the accelerated thermal aging were investigated. The crosslink densities increased as the aging time elapsed and as the aging temperature became higher. Degrees of the crosslink density changes of the BR composite were on the whole larger than those of the CR one except the short-term thermal aging at 60 and $70^{\circ}C$. The crosslink densities abnormally increased after themal aging at high temperatures for a long time. Activation energies for the crosslink density changes of the rubber composites tended to increase with increase of the aging time and the variation showed a local minimum. The activation energies of the CR composite were lower than those of the BR one. The experimental results were explained with a role of ligand of chlorine atom of CR in a zinc complex, steric hindrance by chlorine atom of CR, and oxidation of rubber chain.
Keywords
Thermal aging; BR; CR; Crosslink density; Chlorine effect;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Choi, S.-S.; Han, D.-H. Thermochim. Acta 2009, 490, 8.   DOI   ScienceOn
2 Choi, S.-S.; Han, D.-H. J. Appl. Polym. Sci. 2009, 114, 935.   DOI
3 Brown, R. P.; Butler, T. Natural Ageing of Rubber. Changes in Physical Properties over 40 Years; RAPRA Technology Ltd.: 2000.
4 Brown, R. P.; Butler, T.; Hawley, S. W. Ageing of Rubber. Accelerated Heat Ageing Test Results; RAPRA Technology Ltd.: 2001.
5 Jang, J.-H.; Choi, S.-S. Elast. Comps. 2009, 44, 442.
6 Ahn, W. S.; Park, K.-H. Elast. Comps. 2009, 44, 269.
7 Choi, S.-S. Elast. Comps. 2009, 44, 116.
8 Sae-oui, P.; Sirisinha, C.; Thepsuwan, U.; Hatthapanit, K. Eur. Polym. J. 2007, 43, 185.   DOI
9 Gradwell, M. H. S.; McGill, W. J. J. Appl. Polym. Sci. 1996, 61, 1131.   DOI
10 Morrison, N. J.; Porter, M. Rubber Chem. Technol. 1984, 57, 63.   DOI
11 Chen, C. H.; Koenig, J. L.; Shelton, J. R.; Collins, E. A. Rubber Chem. Technol. 1981, 54, 734.   DOI
12 Choi, S.-S. Kor. Polym. J. 1997, 5, 39.
13 Layer, R. W. Rubber Chem. Technol. 1992, 65, 211.   DOI
14 Choi, S.-S. Elast. Comps. 2009, 44, 116.
15 Choi, S.-S.; Jang, J.-H. Elast. Comps. 2009, 44, 442.
16 Choi, S.-S. Polym. Int. 2001, 50, 107.   DOI
17 Choi, S.-S.; Han, D.-H.; Ko, S.-W.; Lee, H. S. Bull. Kor. Chem. Soc. 2005, 26, 1853.   DOI
18 Choi, S.-S.; Ha, S.-H.; Woo, C.-S. Bull. Kor. Chem. Soc. 2006, 27, 429.   DOI
19 Choi, S.-S.; Han, D.-H. J. Appl. Polym. Sci. 2008, 110, 3560.   DOI
20 Gradwell, M. H. S.; McGill, W. J. J. Appl. Polym. Sci. 1996, 61, 1515.   DOI
21 Layer, R. W.; Lattimer, R. P. Rubber Chem. Technol. 1990, 63, 426.   DOI
22 Johnson, P. R. Rubber Chem. Technol. 1976, 49, 650.   DOI
23 Hwang, B. K.; Hong, K. H.; Park, H. Y.; Jeon, I. R.; Seo, K. H. Elast. Comps. 2009, 44, 299.
24 Choi, S.-S. J. Appl. Polym. Sci. 2002, 83, 2609.   DOI