Browse > Article
http://dx.doi.org/10.14578/jkfs.2017.106.4.417

Genetic Variation of Korean Fir Sub-Populations in Mt. Jiri for the Restoration of Genetic Diversity  

Ahn, Ji Young (Division of Forest Genetic Resources, National Institute of Forest Science)
Lim, Hyo-In (Division of Research Planing and Coordination, National Institute of Forest Science)
Ha, Hyun-Woo (Division of Forest Genetic Resources, National Institute of Forest Science)
Han, Jingyu (Division of Research Planing and Coordination, National Institute of Forest Science)
Han, Sim-Hee (Division of Forest Genetic Resources, National Institute of Forest Science)
Publication Information
Journal of Korean Society of Forest Science / v.106, no.4, 2017 , pp. 417-423 More about this Journal
Abstract
To provide a ecological restoration strategy considering genetic diversity of Abies koreana in Mt. Jiri, the genetic diversity and the genetic differentiation among sub-populations such as Banyabong, Byeoksoryeong, and Cheonwangbong were investigated. The average number of alleles (A) was 7.8, the average number of effective alleles ($A_e$) was 4.9, observed heterozygosity ($H_o$) was 0.578, and expected heterozygosity ($H_e$) was 0.672, respectively. The level of genetic diversity within sub-populations ($H_e=0.672$) was lower than those of both population ($H_e=0.778$) and species ($H_e=0.759$) level. However, the level of genetic diversity was high compared those of Genus Abies. Genetic differentiation was 0.014 from F-statistics ($F_{ST}$) and was 0.004 from AMOVA analysis (${\Phi}_{ST}$). There was no almost genetic differentiation among sub-populations in Mt. Jiri from bayesian clustering. Therefore, If the seeds are sampled sufficiently by selecting the parameters from three sub-populations, it is possible that we could obtain genetically appropriate materials for ecological restoration.
Keywords
Abies koreana; microsatellite markers; genetic differentiation; AMOVA; seed source;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Nardin, M., Musch, B., Rousselle, Y., Guerin, V., Sanchez, L., Jean-Pierre, R., Gerber, S., Marin, S., Paques, L.E. and Philippe, R. 2015. Genetic differentiation of european larch along an altitudinal gradient in the French Alps. Annals of Forest Science DOI 10.1007/s13595-015-0483-8.   DOI
2 National Institute of Forest Science (NIFOS). 2016. Global plan of action for the conservation, sustainable use and development of forest genetic resources. National Institute of Forest Science. Suwon, Republic of Korea. pp. 54.
3 Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in Plants. Molecular Ecology 13: 1143-1155.   DOI
4 Oosterhout, C.V., Hutchinson, W.F., Wills, P.M. and Shiply, P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535-538.   DOI
5 Peakall, R. and Smouse, P.E. 2006. GENEALEX 6: genetic analysis in Excel. population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295.   DOI
6 Postolache, D., Leonarduzzi, C., Piotti, A., Spanu, I., Roig, A., fady, B., Roschanski, A., Liepelt, S. and Vendramin, G.G. 2013. Transcriptome versus genomic microsatellite markers: highly informative multiplexes for genotyping Abies alba Mill. and Congeneric Species. Plant Molecular Biology Report DOI 10.1007/s11105-013-0688-7.   DOI
7 Potter, K.M., Frampton, J., Josserand, S.A. and Nelson, C.D. 2008. Genetic variation and population structure in Fraser fir (Abies fraseri): a microsatellite assessment of young trees. Canadian Journal of Forest Research 38: 2128-2137.   DOI
8 Pritchard, J.K., Stephens, M. and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
9 Rosenberg, N.A. 2004. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 4: 137-138.
10 Ritchie, A.L. and Krauss, S.L. 2012. A genetic assessment of eclolgical restoration success in Banksia attenuata. Restoration Ecology 20(4): 441-449.   DOI
11 Wang, X., Zhang, Q.W., Liufu, Y.Q., Lu, Y.B., Zhan, T. and Tang, S.Q. 2014. Comparative analysis of genetic diversity and population genetic structure in Abies chensiensis and Abies fargesii inferred from microsatellite markers. Biochemical Systematics and Ecology 55: 351-357.   DOI
12 Smulders, M.J.M., Cottrell, J.E., Lefevre, F., Schoot, J., Arens, P., Vosman, B., Tabbener, H.E., Grassi, F., Fossati, T., Castiglione, S., Krestufek, V., Flucj, S., Burg, K., Vornam, B., Pohl, A., Gebhardt, K., Alba, N., Agundez, D., Maestro, C., Notivol, E., Volosyanchuk, R., Pospiskova, M., Bordacs, S., Bovenschen, J., Dam, B.C., Koelewijn, H.P., Halfmaerten, D., Ivens, B., Slycken,J., Vanden Broeck, A., Storme, V. and Boerjan, W. 2008. Structure of the genetic diversity in black poplar (Populus nigra L.) populations across European river systems: Consequences for conservation and restoration. Forest Ecology and Management 255: 1388-1399.   DOI
13 Sujii, P.S., Schwarcz, K.D., Grando, C., Silvestre, E.A., Mori, G.M., Brancalion, P.H.S. and Zucchi, M.I. 2017. Recovery of genetic diversity levels of a neotropical tree in atlantic forest restoration plantations. Biological Conservation 211: 110-116.   DOI
14 Tang, S., Dai, W., Li, M., Zhang, Y., Geng, Y., Wang, L. and Zhong, Y. 2008. Genetic diversity of relictual and endangered plant Abies ziyuanensis (Pinaceae) revealed by AFLP and SSR markers. Genetica 133: 21-30.   DOI
15 Yang, J.C., Yi, D.K., Joo, M.J. and Choi, K. 2015. Phylogeographic study of Abies koreana and Abies nephrolepis in Korea based on mitochondrial DNA. Korean Journal of Plant Taxonomy 45(3): 254-261.   DOI
16 Earl, D.A. and vonHoldt, B.M. 2012. STRUCTURE HARVETER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetic Resources 4: 359-361.   DOI
17 Awad, L., Fady, B., Khater, C., Roig, A. and Cheddadi, R. 2014. Genetic structure and diversity of the endangered fir tree of Lebanon (Abies cilicica Carr.): implications for conservation. PLoS ONE 9(2): e90086.   DOI
18 Bischoff, A., Steinger, T. and Muller-Scharer, H. 2010. The importance of plant provenance and genotypic diversity of seed material used for ecological restoration. Restoration Ecology 18: 338-348.
19 Broadhurst, L. and Boshier, D. 2014. Seed provenance for restoration and management: conserving evolutionary potential and utility. pp. 27-37. In : Bozzano, M., Jalonen, R., Thomas, E., Boshier, D., Gallo, L., Stepehn, C., Bordacs, S., Smith, P. and Loo, J. (Ed.). Genetic considerations in ecosystem restoration using native tree species. Food and Agriculture Organization of the United Nations. Rome, Italy.
20 Cremer, E., Liepelt, S., Sebastiani. F., Buonamici, A., Michalczyk, I.M., Ziegenhagen, B. and Vendramin, G.G. 2006. Identification and characterization of nuclear microsatellite loci in Abies alba Mill. Molecular Ecology Notes 6: 374-376.   DOI
21 Evanno, G., Reanaut, S. and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620.   DOI
22 Hansen, O.K., Vendramin, G.G., Sebastiani, F. and Edwards, K.J. 2005. Development of microsatellite markers in Abies nordmanniana(Stev.) Spach and cross-species amplification in the Abies genus. Molecular Ecology Notes 5: 784-787.   DOI
23 Hong, Y.P., Ahn, J.Y., Kim, Y.M., Yang, B.H. and Song, J.H. 2011. Genetic Variation of nSSR Markers in Natural Populations of Abies koreana and Abies nephrolepis in South Korea. Journal of Korean Forest Society 100(4): 577-584.
24 King, G.M., Gugerli, F., Fonti, P. and Frank, D.C. 2013. Tree growth response aling an elevational gradient: climate or genetics? Oecologia 173: 1587-1600.   DOI
25 Jakobsson, M. and Rosenberg, N.A. 2007. CLUMPP: a cluster matching and permutation program with label switching and multimodality in analysis of population structure. Bioinformatics 23(14): 1801-1806.   DOI
26 Kim, M.S. and Lee, H.C. 2013. A study on changes and distributions of Korean Fir in sub-alpine zone. Journal of the Korean Society of Environmental Restoration Technology 16(5): 49-57.
27 Kim, Y.S., Chang, C.S., Kim, C.S. and Gardner, M. 2011. Abies koreana. The IUCN Red List of Threatened Species 2011: e.T31244A9618913.
28 Koo, K.A., Kong, W.S., Park, S.U., Lee, J.H., Kim, J.U. and Jung, H.C. 2017. Sensitivity of Korean fir (Abies koreana Wils.), a threatened climate relict species, to increasing temperature at an island subalpine area. Ecological Modelling 353: 5-16.   DOI
29 Kong, W.S. 1998. The Alpine and subalpine Geoecology of the Korean Peninsula. Korean Journal of Ecology 21(4): 383-387.
30 Koo, K.A., Park, W.K. and Kong, W.S. 2001. Dendrochronological Analysis of Abies koreana W. at Mt. Halla, Korea: Effects of Climate Change on the Growths. Korean Journal of Ecology 24(5): 281-288.
31 KOREA NATIONAL ARBORETUM (KNA). 2014. Forest of Korea (I) Conservation of Korean fir (Abies koreana) in a changing environment. pp. 85-86.
32 Kwak, M.H., Hong, J.K., Park, J.H., Lee, B.Y., Suh, M.H. and Kim, C.S. 2017. Genetic assessment of Abies koreana (Pinaceae) the endangered Korean fir and conservation implications. Conservation Genetics DOI 10.1007/s10592-017-0968-0   DOI
33 Moriguchi, Y., Kang, K.S., Lee, K.Y., Lee, S.W. and Kim Y.Y. 2009. Genetic variation of Picea jezoensis populations in South Korea revealed by chloroplast, mitochondirial and nuclear DNA markers. Journal of Plant Research 122: 153-160.   DOI
34 Lee, S.W., Yang, B.H., Han, S.D., Song, J.H. and Lee, J.J. 2008. Genetic variation in natural populations of Abies nephrolepis Max. in South Korea. Annual Forest Science. 65(302): 1-7.   DOI
35 Lim, J.H., Woo, S.Y., Kwon, M.J., Chun, J.H. and Shin, J.H. 2006. Photosynthetic capacity and water use efficiency under different temperature regimes on healthy and declining korean fir in Mt. Halla. Journal of Korean Forestry Society. 95(6): 705-710.
36 Mckay, J.K., Christian, C.E., Harrison, S. and Rice, K.J. 2005. How local is local? a review of practical and conceptual issues in the genetics of restoration. Restoration Ecology 13(3): 432-440.   DOI