Browse > Article
http://dx.doi.org/10.22889/KJP.2022.53.2.111

Quantitative Analysis of Kynurenic Acid in Chestnut Honey from Different Regions and Method Validation  

Kim, Juree (Department of Plant Science and Technology, Chung-Ang University)
Kim, Doyun (KEDEM Inc.)
Lee, Sanghyun (Department of Plant Science and Technology, Chung-Ang University)
Publication Information
Korean Journal of Pharmacognosy / v.53, no.2, 2022 , pp. 111-118 More about this Journal
Abstract
Chestnut honey is a sweet dark-colored honey with a distinct bitter aftertaste. It contains numerous phenolic compounds and alkaloids and is noted for its antioxidant and anti-inflammatory activities. However, it has been established that there are differences in the composition and activity of chestnut honey constituents depending on the region of origin, the sources of which warrant further research. In this study, we analyzed the kynurenic acid (KA) contents in chestnut honey produced in nine different regions in Korea, using high-performance liquid chromatography in conjunction with ultraviolet detection, and validated the analytical method developed. Use of a reverse-phase column and detection at a wavelength of 240 nm were found to be optimal for the detection of KA. Similar evaluation of an optimal method for extracting KA from chestnut honey revealed that extraction using 10% EtOH at 20 times the sample volume over a 6 h period was the most suitable for obtaining a high content of KA. Among the nine regional chestnut honeys assessed, KA content was found to be highest in the "Gongju" sample (1.14 mg/g), followed by that in the "Cheongdo" and "Damyang" samples. Validation of the KA analytical method revealed a good analyte linearity, with a correlation coefficient (r2) of 0.9995, an accuracy of between 92.37% and 107.35%, and good precision (RSD ≤ 1.05%). Our findings in this study, based on a validated quantitative analytical method for KA, could make an important contribution to establishing a data profiling procedure for characterizing chestnut honeys produced in different regions, and may also provide basic data for the identification of functional honey.
Keywords
Chestnut honey; HPLC-UV; Kynurenic acid; Method validation; Quantitative analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 White, J. and Crane, E. (1975) Honey a comprehensive survey. In Crane. E. (ed.), Morrison and Gibb Ltd., 194-206, London.
2 Kim, Y. K., Lee, S., Song, J. H., Kim, M. J., Yunusbaev, U., Lee, M. L., Kim, M. S. and Kwon, H. W. (2020) Comparison of biochemical constituents and contents in floral nectar of Castanea spp. Molecules 25: 4225.   DOI
3 Fyfe, L., Okoro, P., Paterson, E., Coyle, S. and McDougall, G. J. (2017) Compositional analysis of Scottish honeys with antimicrobial activity against antibiotic-resistant bacteria reveals novel antimicrobial components. LWT - Food Sci. Technol. 79: 52-59.   DOI
4 Schievano, E., Morelato, E., Facchin, C. and Mammi, S. (2013) Characterization of markers of botanical origin and other compounds extracted from unifloral honeys. J. Agric. Food Chem. 61: 1747-1755.   DOI
5 Crane, E. (1991) Honey from honeybees and other insects. Ethol. Ecol. Evol. 3: 100-105.   DOI
6 Hunt, C. L. and Atwater, H. W. (1915) Honey and its uses in the home. US Government Printing Office, Washington, D.C.
7 Othman, N. H. (2012) Honey and cancer: sustainable inverse relationship particularly for developing nations-a review. Evid. Based. Complement. Alternat. Med. 2012.
8 Gharzouli, K., Amira, S., Gharzouli, A. and Khennouf, S. (2002) Gastroprotective effects of honey and glucose-fructose-sucrose-maltose mixture against ethanol-, indomethacin-, and acidified aspirin-induced lesions in the rat. Exp. Toxicol. Pathol. 54: 217-221.   DOI
9 Blomfield, R. (1973) Honey for decubitus ulcers. JAMA 224: 905-905.   DOI
10 Efem, S. (1988) Clinical observations on the wound healing properties of honey. Br. J. Surg. 75: 679-681.   DOI
11 Estevinho, L., Pereira, A. P., Moreira, L., Dias, L. G. and Pereira, E. (2008) Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem. Toxicol. 46: 3774-3779.   DOI
12 Ferreira, I. C. F. R., Aires, E., Barreira, J. C. M. and Estevinho, L. M. (2009) Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem. 114: 1438-1443.   DOI
13 Jeong, H.-R., Baek, Y., Kim, D.-O. and Lee, H. (2018) Anti-oxidative and antimelanogenic effects of ethyl acetate fractions of Korean domestic honeys from different floral sources. Korean. J. Food. Sci. Technol. 50: 660-664.   DOI
14 Kolayli, S., Sahin, H., Can, Z., Yildiz, O. and Sahin, K. (2016) Honey shows potent inhibitory activity against the bovine testes hyaluronidase. J. Enzyme. Inhib. Med. Chem. 31: 599-602.   DOI
15 Sarikaya, A. O., Ulusoy, E., Ouml, Zt, Uuml, Rk, N., Uuml, Tun, Ccedil, El, M. and Kolayli, S. (2009) Antioxidant activity and phenolic acid constituents of chestnut (Castania sativa Mill.) honey and propolis. J. Food Biochem. 33: 470-481.   DOI
16 Meteoglu, I., Kavas, N. C., Saricaoglu, M., Ilkaya, F., Guzel, H., Alici, O. and Ozturk, F. (2015) Chestnut honey and sherbet enhance the healing of burn wounds in rat model. Clin. Invest. Med. (Online) 38: E267-E273.
17 Majlath, Z., Torok, N., Toldi, J. and Vecsei, L. (2016) Memantine and kynurenic acid: current neuropharmacological aspects. Curr. Neuropharmacol. 14: 200-209.   DOI
18 Erhardt, S., Olsson, S. K. and Engberg, G. (2009) Pharmacological manipulation of kynurenic acid. CNS Drugs 23: 91-101.   DOI
19 Beretta, G., Artali, R., Caneva, E., Orlandini, S., Centini, M. and Facino, R. M. (2009) Quinoline alkaloids in honey: further analytical (HPLC-DAD-ESI-MS, multidimensional diffusion-ordered NMR spectroscopy), theoretical and chemometric studies. J. Pharm. Biomed. Anal. 50: 432-439.   DOI
20 Beretta, G., Granata, P., Ferrero, M., Orioli, M. and Facino, R. M. (2005) Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta. 533: 185-191.   DOI
21 Beretta, G., Caneva, E., Regazzoni, L., Bakhtyari, N. G. and Maffei Facino, R. (2008) A solid-phase extraction procedure coupled to 1H NMR, with chemometric analysis, to seek reliable markers of the botanical origin of honey. Anal. Chim. Acta 620: 176-182.   DOI
22 Truchado, P., Martos, I., Bortolotti, L., Sabatini, A. G., Ferreres, F. and Tomas-Barberan, F. A. (2009) Use of quinoline alkaloids as markers of the floral origin of chestnut honey. J. Agric. Food Chem. 57: 5680-5686.   DOI
23 Tomas-Barberan, F. A., Martos, I., Ferreres, F., Radovic, B. S. and Anklam, E. (2001) HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. J. Sci. Food Agric. 81: 485-496.   DOI
24 Beretta, G., Caneva, E. and Facino, R. M. (2007) Kynurenic acid in honey from arboreal plants: MS and NMR evidence. Planta Med. 73: 1592-1595.   DOI
25 Thumar, N. J. and Patel, M. P. (2012) Synthesis, characterization and biological activity of some new carbostyril bearing 1 H-pyrazole moiety. Med. Chem. Res. 21: 1751-1761.   DOI
26 Guideline, I. H. T. (2005). Validation of analytical procedures: text and methodology Q2 (R1). International conference on harmonization, Geneva, Switzerland.
27 Ronsisvalle, S., Lissandrello, E., Fuochi, V., Petronio Petronio, G., Straquadanio, C., Crasci, L., Panico, A., Milito, M., Cova, A. M., Tempera, G. and Furneri, P. M. (2019) Antioxidant and antimicrobial properties of Casteanea sativa Miller chestnut honey produced on Mount Etna (Sicily). Nat. Prod. Res. 33: 843-850.   DOI
28 Stephens, J., Molan, P. C. and Clarkson, B. D. (2005) A review of Leptospermum scoparium (Myrtaceae) in New Zealand. N. Z. J. Bot. 43: 431-449.   DOI
29 Miguel, M., Antunes, M. D. and Faleiro, M. L. (2017) Honey as a complementary medicine. Integr. Med. Insights. 12: 1178633717702869.
30 Jayashree, B., Thomas, S. and Nayak, Y. (2010) Design and synthesis of 2-quinolones as antioxidants and antimicrobials: a rational approach. Med. Chem. Res. 19: 193-209.   DOI
31 Alvarez-Suarez, J. M., Gasparrini, M., Forbes-Hernandez, T. Y., Mazzoni, L. and Giampieri, F. (2014) The composition and biological activity of honey: a focus on Manuka honey. Foods 3: 420-432.   DOI
32 Cho, J.-Y., Bae, S.-H., Kim, H.-K., Lee, M.-L., Choi, Y.-S., Jin, B.-R., Lee, H. J., Jeong, H. Y., Lee, Y. G. and Moon, J.-H. (2015) New quinolinone alkaloids from chestnut (Castanea crenata Sieb) honey. J. Agric. Food Chem. 63: 3587-3592.   DOI
33 Donarski, J. A., Jones, S. A., Harrison, M., Driffield, M. and Charlton, A. J. (2010) Identification of botanical biomarkers found in Corsican honey. Food Chem. 118: 987-994.   DOI
34 Oelschlaegel, S., Gruner, M., Wang, P.-N., Boettcher, A., Koelling-Speer, I. and Speer, K. (2012) Classification and characterization of manuka honeys based on phenolic compounds and methylglyoxal. J. Agric. Food Chem. 60: 7229-7237.   DOI
35 Kim, S.-G., Kim, H.-Y., Choi, H.-M., Lee, H.-J., Moon, H.-J., Han, S.-M. (2021) A rapid method for determination of kynurenic acid in Korean chestnut (Castanea crenata) honey by UPLC. J. Apic. Res. 36: 183-188.
36 Kim, S. H. (2016) Study on nutritional property and use potential of Gochujang using Gongju chestnuts. J. Nutr. Health. 49: 395-399.   DOI
37 Park, K. S. (2003) Study on the Characters of chestnut cultivation and the characteristics of nuts in Gongju region, Chungnam. Dissertation, Kongju National University.
38 Soto, M. E., Ares, A. M., Bernal, J., Nozal, M. J. and Bernal, J. L. (2011) Simultaneous determination of tryptophan, kynurenine, kynurenic and xanthurenic acids in honey by liquid chromatography with diode array, fluorescence and tandem mass spectrometry detection. J. Chromatogr. A. 1218: 7592-7600.   DOI
39 Turski, M. P., Chwil, S., Turska, M., Chwil, M., Kocki, T., Rajtar, G. and Parada-Turska, J. (2016) An exceptionally high content of kynurenic acid in chestnut honey and flowers of chestnut tree. J. Food Compos. Anal. 48: 67-72.   DOI