Browse > Article

Anti-inflammatory Effects of MeOH Extract of Corylopsis gotoana Uyeki  

Lee, Ha Na (College of Pharmacy, Woosuk University)
Cha, Dong Seok (College of Pharmacy, Woosuk University)
Jeon, Hoon (College of Pharmacy, Woosuk University)
Publication Information
Korean Journal of Pharmacognosy / v.47, no.2, 2016 , pp. 165-171 More about this Journal
Abstract
Corylopsis gotoana (Hamamelidaceae) has been used as a traditional medicine for the treatment various diseases including cold, edema and vomiting. However, previous studies regarding component analysis and pharmacological actions of C. gotoana are extremely limited until now. In this study, we investigated anti-inflammatory activities of the methanolic extract of the twigs of Corylopsis gotoana (MCG) both in vitro and in vivo. MCG effectively inhibited excessive NO production in IFN-${\gamma}$ and LPS-stimulated mouse peritoneal macrophages without notable cytotoxicity. In addition, we also found that MCG could attenuate the expression of inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We further tested in vivo anti-inflammatory activity of MCG using paw edema mouse model. Herein, MCG demonstrated significant suppression on the paw edema induced by both of trypsin and carrageenan. These results indicated that MCG has potent anti-inflammatory potential and may be useful for prevention and treatments of inflammatory diseases.
Keywords
Corylopsis gotoana Uyeki; Anti-inflammation; Nitric oxide; Paw edema;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. . J. Immunol. Methods 65: 55-63.   DOI
2 Israf, D., Khaizurin, T., Syahida, A., Lajis, N. and Khozirah, S. (2007) Cardamonin inhibits COX and iNOS expression via inhibition of $p65NF-{\kappa}B$ nuclear translocation and $I{\kappa}-B$B phosphorylation in RAW 264.7 macrophage cells. Mol. Immunol. 44: 673-679.   DOI
3 Bjarnason, I., Hayllar, J., MacPherson, A. J. and Russell, A. S. (1993) Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology 104: 1832-1847.   DOI
4 Singh, G. and Triadafilopoulos, G. (1999) Epidemiology of NSAID induced gastrointestinal complications. J. Rheumatol. Suppl. 56: 18-24.
5 Kim, H. P., Son, K. H., Chang, H. W. and Kang, S. S. (2004) Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 96: 229-245.   DOI
6 Yuan, G., Wahlqvist, M. L., He, G., Yang, M. and Li, D. (2006) Natural products and anti-inflammatory activity. Asia Asia Pac. J. Clin. Nutr. 15: 143.
7 Moore, P., Babbedge, R., Wallace, P., Gaffen, Z. and Hart, S. (1993) 7-Nitro indazole, an inhibitor of nitric oxide synthase, exhibits anti-nociceptive activity in the mouse without increasing blood pressure. Br. J. Pharmacol. 108: 296-297.   DOI
8 Kimura, H., Hokari, R., Miura, S., Shigematsu, T., Hirokawa, M., Akiba, Y., Kurose, I., Higuchi, H., Fujimori, H., Tsuzuki, Y., Serizawa, H. and Ishii, H. (1998) Increased expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in colonic mucosa of patients with active ulcerative colitis. Gut. 42: 180-187.   DOI
9 Sawa, T. and Ohshima, H. (2006) Nitrative DNA damage in inflammation and its possible role in carcinogenesis. Nitric Oxide 14: 91-100.   DOI
10 Koetzner, L., Gregory, J. A. and Yaksh, T. L. (2004) Intrathecal protease-activated receptor stimulation produces thermal hyperalgesia through spinal cyclooxygenase activity. J. Pharmacol. Exp. Ther. 311: 356-363.   DOI
11 Mantovani, A., Allavena, P., Sica, A. and Balkwill, F. (2008) Cancer-related inflammation. Nature 454: 436-444.   DOI
12 Masferrer, J. L., Zweifel, B. S., Manning, P. T., Hauser, S. D., Leahy, K. M., Smith, W. G., Isakson, P. C. and Seibert, K. (1994) Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci. 91: 3228-3232.   DOI
13 Kawabata, A., Kawao, N., Kuroda, R., Tanaka, A., Itoh, H. and Nishikawa, H. (2001) Peripheral PAR-2 triggers thermal hyperalgesia and nociceptive responses in rats. Neuroreport 12: 715-719.   DOI
14 Kelso, E. B., Lockhart, J. C., Hembrough, T., Dunning, L., Plevin, R., Hollenberg, M. D., Sommerhoff, C. P., McLean, J. S. and Ferrell, W. R. (2006) Therapeutic promise of proteinase- activated receptor-2 antagonism in joint inflammation. J. Pharmacol. Exp. Ther. 316: 1017-1024.
15 Vergnolle, N., Hollenberg, M. D., Sharkey, K. A. and Wallace, J. L. (1999) Characterization of the inflammatory response to proteinase-activated receptor-2 (par2)-activating peptides in the rat paw. Br. J. Pharmacol. 127: 1083-1090.   DOI
16 Gao, X., Guo, M., Zhang, Z., Wang, T., Cao, Y. and Zhang, N. (2015) Bergenin plays an anti-inflammatory role via the modulation of MAPK and NF-${\kappa}B$ signaling pathways in a mouse model of LPS-induced mastitis. Inflammation 38: 1142-1150.   DOI
17 Tsang, M. S., Jiao, D., Chan, B. C., Hon, K., Leung, P. C., Lau, C., Wong, E. C., Cheng, L., Chan, C. K. and Lam, C. W. (2016) Anti-inflammatory activities of pentaherbs formula, berberine, gallic acid and chlorogenic acid in atopic dermatitis- like skin inflammation. Molecules 21: 519.   DOI
18 Shahid, A., Ali, R., Ali, N., Hasan, S. K., Bernwal, P., Afzal, S. M., Vafa, A. and Sultana, S. (2016) Modulatory effects of catechin hydrate against genotoxicity, oxidative stress, inflammation and apoptosis induced by benzo (a) pyrene in mice. Food and Chem. Toxicol. 92: 64-74.   DOI
19 Cordero-Herrera, I., Chen, X., Ramos, S. and Devaraj, S. (2015) (-)-Epicatechin attenuates high-glucose-induced inflammation by epigenetic modulation in human monocytes. Eur. J. Nutr. : 1-5 (DOI: 10.1007/s00394-015-1136-2).   DOI
20 Hsu, C., Fang, S. and Yen, G. (2013) Anti-inflammatory effects of phenolic compounds isolated from the flowers of Nymphaea mexicana Zucc. Food & function 4: 1216-1222.   DOI
21 Ley, S., Weigert, A. and Brune, B. (2010) Neuromediators in inflammation-a macrophage/nerve connection. Immunobiology 215: 674-684.   DOI
22 Lawrence, T., Willoughby, D. A. and Gilroy, D. W. (2002) Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nature Reviews Immunology 2: 787-795.   DOI
23 Rakel, D. P. and Rindfleisch, A. (2005) Inflammation: nutritional, botanical, and mind-body influences. South. Med. J. 98: 303-311.   DOI
24 Fujiwara, N. and Kobayashi, K. (2005) Macrophages in inflammation. Current Drug Targets-Inflammation & Allergy 4: 281-286.   DOI
25 Nagy, G., Clark, J. M., Buzas, E. I., Gorman, C. L. and Cope, A. P. (2007) Nitric oxide, chronic inflammation and autoimmunity. Immunol. Lett. 111: 1-5.   DOI
26 Saha, K., Lajis, N., Israf, D., Hamzah, A. S., Khozirah, S., Khamis, S. and Syahida, A. (2004) Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants. J. Ethnopharmacol. 92: 263-267.   DOI
27 Varin, A. and Gordon, S. (2009) Alternative activation of macrophages: immune function and cellular biology. Immunobiology 214: 630-641.   DOI
28 Brown, G. C. (1999) Nitric oxide and mitochondrial respiration. Biochimica et Biophysica Acta (BBA)-Bioenergeics 1411: 351-369.   DOI
29 Bredt, D. S. (1999) Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic. Res. 31: 577-596.   DOI
30 Crofford, L. J. (1997) COX-1 and COX-2 tissue expression: implications and predictions. J. Rheumatol. Suppl. 49: 15-19.
31 Jeong, J. B. and Jeong, H. J. (2010) Rheosmin, a naturally occurring phenolic compound inhibits LPS-induced iNOS and COX-2 expression in RAW264. 7 cells by blocking $NF-{\kappa}B$ activation pathway. Food and Chem. Toxicol. 48: 2148-2153.   DOI
32 Chang, Y., Li, P., Chen, B., Chang, M., Wang, J., Chiu, W. and Lin, C. (2006) Lipoteichoic acid-induced nitric oxide synthase expression in RAW 264.7 macrophages is mediated by cyclooxygenase-2, prostaglandin E 2, protein kinase A, p38 MAPK, and nuclear factor-${\kappa}B$ pathways. Cell Signal 18: 1235-1243.   DOI
33 Park, E., Min, H., Ahn, Y., Bae, C., Pyee, J. and Lee, S. K. (2004) Synthesis and inhibitory effects of pinosylvin derivatives on prostaglandin E 2 production in lipopolysaccharideinduced mouse macrophage cells. Bioorg. Med. Chem. Lett. 14: 5895-5898.   DOI
34 Han, J. Y., Cho, S. S., Yang, J. H., Kim, K. M., Jang, C. H., Park, D. E., Bang, J. S., Jung, Y. S. and Ki, S. H. (2015) The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation. Toxicol. Appl. Pharmacol. 287: 77-85.   DOI
35 Lee, J. H., Kang, H. C., Ahn, H. C. and Cho, H. S. (1999) Vegetation structure and sprouting dynamics of Corylopsis coreana community belong to Korean endemic plants. Korean J. Environ. Ecol. 13: 280-287.
36 Jang, H. T., Kim, N. C., Kim, M. Y., Kwon, H. J. and Song, H. K. (2008) Vegetation and soil properties of Corylopsis coreana population in Korea. Korean J. Environ. Ecol. 22: 609-615.
37 Boo, H., Shin, J., Shin, J., Choung, E., Bang, M., Choi, K. and Song, W. (2012) Assessment on antioxidant potential and enzyme activity of some economic resource plants. Korean Journal of Plant Resources 25: 349-356.   DOI
38 Kim, M. H., Ha, S. Y., Oh, M. H., Kim, H. H., Kim, S. R. and Lee, M. W. (2013) Anti-oxidative and anti-proliferative activity on human prostate cancer cells lines of the phenolic compounds from Corylopsis coreana Uyeki. 18: 4876-4886.   DOI
39 박종희 (2004) 한국약초도감, 636. 신일상사, 서울.
40 김창민, 신민교, 안덕균, 이경순 (1997) 중약대사전, 699, 도서출판 정담, 서울.
41 중앙대학교 산학협력단 (2014) 히어리 잎 추출물 또는 이로부터 분리된 페놀성 화합물을 유요성분으로 포함하는 항염증 또는 항산화 조성물. 대한민국 특허. 등록번호 1014023710000
42 Kwon, O. K., Kim, C. S., Suh, W. S., Park, K. J., Cha, J. M., Choi, S. U., Kwon, H. C. and Lee, K. R. (2016) Phenolic compounds from the twigs of Corylopsis coreana Uyeki and their cytotoxic activity. Kor. J. Pharmacogn. 47: 1-6.