Browse > Article

Anti-oxidant Activities and Anti-inflammatory Effects on Artemisia scoparia  

Yoon, Weon-Jong (Jeju Biodiversity Research Institute, Jeju Hi- Tech Industry Development Institute)
Lee, Jung-A (Jeju Biodiversity Research Institute, Jeju Hi- Tech Industry Development Institute)
Kim, Ji-Young (Jeju Biodiversity Research Institute, Jeju Hi- Tech Industry Development Institute)
Oh, Dae-Ju (Jeju Biodiversity Research Institute, Jeju Hi- Tech Industry Development Institute)
Jung, Yong-Hwan (Jeju Biodiversity Research Institute, Jeju Hi- Tech Industry Development Institute)
Lee, Wook-Jae (Jeju Biodiversity Research Institute, Jeju Hi- Tech Industry Development Institute)
Park, Soo-Yeong (Jeju Biodiversity Research Institute, Jeju Hi- Tech Industry Development Institute)
Publication Information
Korean Journal of Pharmacognosy / v.37, no.4, 2006 , pp. 235-240 More about this Journal
Abstract
We investigated the antioxidant activities such as DPPH radical scavenging capacity, xanthine oxidase inhibitory activity, and superoxide radical scavenging capacity of the aqueous EtOH extract and its solvent fractions of Artemisia scoparia. The ethyl acetate fraction showed high antioxidant activity, compared to positive controls such as ascorbic acid, butylated hydroxy anisole (BHA), trolox, and allopurinol in these assay systems. Moreover, we examined the inhibitory effect of solvent fractions of A. scoparia on the production of pro-inflammatory factors that the nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and prostaglandin E2 $(PGE_2)$ production activated with LPS $(1{\mu}g/ml)$ in murine macrophage cell line RAW264.7. The amounts of protein levels were determined by immunoblottting. Tn the sequential fractions of hexane and dichloromethane inhibited the NO and $PGE_2$ production and the protein level of iNOS and COX-2. These results suggest that A. scoparia may have anti-inflammatory activity through the antioxidant activity and inhibition of pro-inflammatory factors.
Keywords
Artemisia scoparia; NO; iNOS; COX-2; $PGE_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Willoughby, D. A. (1975) Human arthritis applied to animal models. Towards a better therapy. Ann. Rheum. Dis., 34: 471-478   DOI   ScienceOn
2 Funk, C. D., Frunk, L. B., Kennedy, M. E., Pong, A. S. and Fitzgerald, G A. (1991) Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J., 5: 2304-2312   DOI
3 Ryu, J. H. Ahn, H. Kim, J. Y and Kim, Y. K. (2003) Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother Res., 17: 485-489   DOI   ScienceOn
4 Seibert, K., Zhang, Y, Leahy, K., Hauser, S, Masferrer, J., Perkins, W., Lee, L. and Isakson, P. (1994) Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci. USA, 91: 12013-12017
5 Lee, E. S., Ju, H. K., Moon, T. C, Lee, E., Jahng, Y, Lee S. H, Son, J. K., Baek, S. H. and Chang, H. W. (2004) Inhibition of nitric oxide and tumor necrosis $factor-{\alpha}$ $(TNF-{\alpha})$ production by propenone compound through blockade of nuclear factor (NF)-$\kappa$B activation in cultured murine macrophages. Biol. Pharm. Bull., 27: 617-620   DOI   ScienceOn
6 Halliwell, B. and Gutteridga, J. M. (1984) Oxigen toxicity, oxygen radicals, transition metals and disease. Biochem. J., 219: 1-14   DOI
7 Tesuka, Y, Irikawa, S., Kaneko, T., Banskota, A. H., Nagaoka, T, Xiong, Q., Hase, K. and Kadota, S. (2001) Screening of Chinese herval drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of Zanthoxylum bugeanum. J. Ethnopharmacol., 11: 209-217
8 Nishikimi, M., N.A. Roa, K. Yagi (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun., 46: 849-854   DOI   ScienceOn
9 Mu, M. M., Chakravortty, D., Sugiyama, T, Koide, N., Takahashi, K., Mori, I., Yoshida, T. and Yokochi, T. (2001) The inhibitory action of quercetin on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells. J. Endotoxin Res., 7: 431-438   DOI
10 Mukaida, N., Ishikawa, Y., Ikeda, N., Fujioka, N., Watanabe, S. and Kuno, K. (1996) Novel insight into molecular mechanism of endotoxin shock; biochemical analysis of LPS receptor signaling in a cell-free system targeting NF-kapperB and regulation of cytokine production/action through beta2 integrin in vivo. J. Leukoc. Biol., 59: 145-151   DOI
11 Kim, J. Y, Jung, K. S. and Jeong, H. G (2004) Suppressive effects of the kahweol and cafestol on cycloocygenase-2 expression in macrophages. FEBS Letters, 569: 321-326   DOI   ScienceOn
12 Scott, M. G and Hancock, R. E. (2000) Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol., 20: 407-431
13 한국식품성분표 (1996) 90-91. 보건복지부 식품의약품 안전본부
14 Weis, Z. A., Cicatiello, L. and Esumi, H. (1996) Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and $N^{G}$-monomethyl-L-arginine. Biochem J., 316: 209-215   DOI
15 Masferrer, J., Zweifel B. S., Manning, P. T, Hauser, S. D., Leahy, K. M., Smith, W. G, Isakson. P. C. and Seibert, K. (1994) Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci., 91: 3228-3232
16 Tan, R. X., Zheng, W. F. and Tang, H. Q. (1998) Biologically active substances from the genus Artemisia. Planta Med., 64: 295-302   DOI   ScienceOn
17 Lazarov, S., Balutsov, M. and Ianev, E. (2000) The role of bacterial endotoxins, receptors and cytokines in the pathogenesis of septic(endotoxin) shock. Vutr. Boles., 32: 33-40
18 Blois, M.S. (1958) Antioxidant determinations by the use of a stable free radical. Nature, 181: 1198-1200
19 Vane, J. A. (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like durgs. Nat. New. Biol., 23: 232-235
20 Cheng, Z. J., Kuo, S. C, Chan, S. C, Ko, F. N. and Teng, C. M. (1998) Antioxidant properties of butein isolated from Dalbergia odorifera. Biochim Biophys Acta, 1392: 291-299   DOI   ScienceOn
21 Fridovich, I. (1970) Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J. Biol. Chem., 245: 4053-4057
22 Korycka-Dahl, M., Richardson, T. and Hicks, C. (1979) Superoxide Dismutase Activity in Bovine Milk Serum, J. Food Protection, 42: 867-871   DOI
23 Hyun, E. A., Lee, H. J., Yoon, W. J., Park, S. Y, Kang, H. K., Kim, S. J. and Yoo, E. S. (2004) Inhibitory Effect of Salvia officinalis on the Inflammatory Cytokines and Inducible Nitric Oxide Synthesis in Murine Macrophage RAW 264.7. YAKHAK HOEJI, 48: 159-164
24 McCord, J. M. (1974) Free radicals and inflammation: protection of synodal fluid by superoxide dismutase. Science, 185: 529-531   DOI   ScienceOn
25 McCord, J. M, Wong, K., Stokes, S. H., Petrone, W. F. and English, D. (1980) Superoxide and inflammation: A mechanism for the anti-inflammatory activity of superoxide dismutase. Acta Physiol Scand Suppl., 492: 25-30
26 Axtelle, T. and Pribble, J. (2001) IC14, a CD14 specific monoclonal antibody is a potential treatment for patients with severe sepsis. J. Endotoxin. Res., 7: 310-314   DOI
27 Santos-Gomes, P. C, Seabra, R. M., Andrade, P. B. and Fernandes-Ferreira. M. (2003) Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). J. Plant Physiol., 160: 1025-1032   DOI   ScienceOn