Browse > Article
http://dx.doi.org/10.15230/SCSK.2011.37.2.097

Transdermal Delivery System of Effective Ingredients for Cosmeceuticals  

Cho, Wan-Goo (College of Alternative Medicine, Jeonju University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.37, no.2, 2011 , pp. 97-119 More about this Journal
Abstract
World consumers are now focusing on their health, well-being and appearance more than ever before. This trend is creating heightened demand for products formulated as cosmeceuticals with active ingredients. A significant number of innovative formulations are now being used in cosmetics with real consumer-perceivable benefits and optimized sensory attributes, resulting in an economic uplift of cosmetic industry. To obtain skin care formulations with real consumer-perceivable benefits through dermal delivery of active ingredients, formulators are resorting to technology that until recently was used in pharmaceutical products. These various delivery systems are now being used in cosmecuetical formulations. Novel delivery systems reviewed here possess enormous potential as next-generation smarter carrier systems.
Keywords
transdermal; delivery; cosmeceuticals; vehicle; DDS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Z. B. Zhang, Z. G. Shen, J. X. Wang, H. X. Zhang, H. Zhao, J. F. Chen, and J. Yun, Micronization of silybin by the emulsion solvent diffusion method, Int. J. Pharm., 376, 116 (2009).   DOI
2 K. A. Shah, A. A. Date, M. D. Joshi, and V. B. Patravale, Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery, Int. J. Pharm., 345, 163 (2007).   DOI
3 M. Moinard-Checot, Y. Chevalier, S. Briancon, L. Beney, and H. Fessi, Mechanism of nanocapsules formation by the emulsion-diffusion process, J. Colloid Interface Sci., 317, 458 (2008).   DOI   ScienceOn
4 J. Jung and M. Perrut, Particle design using supercritical fluids: literature and patent survey, J. Supercrit. Fluids, 20, 179 (2001).   DOI   ScienceOn
5 R. Jagannathan, G. Irvin, T. Blanton, and S. Jagannathan, Organic nanoparticles: preparation, selfassembly, and properties, Adv, Funct. Mater, 16, 747 (2006).   DOI   ScienceOn
6 C. Gomez-Gaete, N. Tsapis, M. Besnard, A. Bochot, and E. Fattal, Encapsulation of dexamethasone into biodegradable polymeric nanoparticles, Int. J. Pharm., 331, 153 (2007).   DOI   ScienceOn
7 S. A. Wissing, O. Kayser, and R. H. Muller, Solid lipid nanoparticles for parenteral drug delivery, Adv. Drug. Deliv. Rev., 56, 1257 (2004).   DOI   ScienceOn
8 D. Quintanar-Guerrero, E. AlIeman, H. Fessi, and E. Doelker, Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers, Drug Dev. Ind. Pharm., 24, 1113 (1998).   DOI   ScienceOn
9 H. S. Tan and W. R. Pfister, Pressure-sensitive adhesives for transdermal drug delivery systems, PSTT, 2(2), 60 (1999).
10 C. Ramachandran and D. Fleisher, Transdermal delivery of drugs for the treatment of bone diseases, Adv. Drug Deliv. Rev.. 42, 197 (2000).   DOI   ScienceOn
11 R. H. Mueller, K. Maeder, and S. Gohla, Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art, Eur. J. Pharm. Biopharm., 50, 161 (2000).   DOI   ScienceOn
12 H. Fessi, F. Puisieux, J. P. Devissaguet, N. Ammoury, and S. Benita, Nanocapsule formation by interfacial polymer deposition following solvent displacement, Int. J. Pharm., 55, R1 (1989).   DOI   ScienceOn
13 B. Mishra, B. B. Patel, and S. Tiwari, Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery, Nanomedicine: Nanotechnology, Biology, and Medicine, 6, 9 (2010).   DOI   ScienceOn
14 E. Reverchon, G. D. Porta, and R. Taddeo, Solubility and micronization of griseofulvin in supercritical CHF3, Ind. Eng. Chem. Res., 34, 4087 (1995).   DOI   ScienceOn
15 El-S. Khafagy, M. Morishita, Y. Onuki, and K. Takayama, Current challenges in non-invasive insulin delivery systems: a comparative review, Adv. Drug Deliv. Rev.. 59, 1521 (2007).   DOI   ScienceOn
16 J. A. Subramony, A. Sharma, and J. B. Phipps, Microprocessor controlled transdermal drug delivery, Int. J. Pharm., 317, 1 (2006).   DOI   ScienceOn
17 B. Jiang, L. Hu, C. Gao, and J. Shen, Ibuprofenloaded nanoparticles prepared by a co-precipitation method and their release properties, Int. J. Pharm., 304, 220 (2005).   DOI   ScienceOn
18 X. Chen, T. J. Young, M. Sarkari, R. O. Williams, and K. P. Johnston, Preparation of cyclosporine a nanoparticles by evaporative precipitation into aqueous solution, Int. J. Pharm., 242, 3 (2002).   DOI   ScienceOn
19 S. Goto, M. Kawata, T. Suzuki, N. S. Kim, and C. Ito, Preparation and evaluation of eudragit gels. I: eudragit organogels containing drugs as rectal sustainedrelease preparations, J. Pharm. Sci., 80, 958 (1991).   DOI
20 M. M. Badrana, J. Kuntsche, and A. Fahra, Skin penetration enhancement by a microneedle device ($dermaroller^{{\circledR}}$) in vitro: dependency on needle size and applied formulation, Eur. J. Pharm. Sci., 36, 511 (2009).   DOI   ScienceOn
21 P. Santoianni, M. Nino, and G. Calabro, Intradermal drug delivery by low frequency sonophoresis (25 kHz), Dermatol. Online J., 10, 24 (2004).
22 A. Arellano, S. Santoyo, C. Martin, and P. Ygartua, Influence of propylene glycol and isopropyl myristate on in vitro percutaneous penetration of diclofenac sodium from carbopol gel, Eur. J. Pharm. Sci., 7, 129 (1999).   DOI   ScienceOn
23 M. C. Jones, P. Tewari, C. Blei, K. Hales, D. J. Pochan, and J. C. Leroux, Self-assembled nanocages for hydrophilic guest molecules, J. Am. Chem. Soc., 128, 14599 (2006).   DOI   ScienceOn
24 T. Penzes, I. Csoka, and I. Eros, Rheological analysis of the structural properties effecting the percutanneous absorption and stability in pharmaceutical organogels, Rheol. Acta, 43, 457 (2004).   DOI   ScienceOn
25 L. Kang, X. Y. Liu, P. D. Sawant, P. C. Ho, Y. W. Chan, and S. Y. Chan, SMGA gels for the skin permeation of haloperidol, J. Control. Release, 106, 88 (2005).   DOI   ScienceOn
26 U. S. Patent 6,632,843 (2003).
27 S. Murdan, G. Gregoriadis, and A. T. Florence, Non-ionic surfactant based organogels incorporating niosomes, S.T.P. Pharm. Sci., 6, 44 (1996).
28 J. H. Park, S. O. Choi, S. M. Seo, Y. B. Choy, R. Mark, and A. Prausnitz, Microneedle roller for transdermal drug delivery, Eur. J. Pharm. Biopharm., 76, 282 (2010).   DOI   ScienceOn
29 N. Katz, D. Shapiro, T. Herrmann, J. Kost, and L. Custer, Rapid onset of cutaneous anesthesia with EMLA cream after pretreatment with a new ultrasound-emitting device, Anesth. Analg., 98, 371 (2004).
30 J. Chen, K. D. Wise, J. F. Hetke, and S. C. Bledsoe, A multichannel neural probe for selective chemical delivery at the cellular level, IEEE Trans. Biomed. Eng., 44, 760 (1997).   DOI   ScienceOn
31 W. G. Cho, M. J. Rang, Y. S. Song, Y. H. Lim, and H. W. Park, Enhanced transdermal delivery of vitamin C derivative using gel patch with flexible thin layer battery, J. Soc. Cosmet. Sci., Kor., 33(1), 23 (2007).
32 U. S. Patent 28,789 (2002).
33 N. Jibry and S. Murdan, In vivo investigation, in mice and man, into the irritation potential of novel amphiphilogels being studied as transdermal drug carriers, Eur. J. Pharm. Biopharm., 58, 107 (2004).   DOI   ScienceOn
34 R. C. Robinson, Plastibase, a hydrocarbon gel ointment base, Bull. Sch. Med. Univ. Md., 40, 86 (1955).
35 U. S. Patent 6,306,383 (2001).
36 S. B. Hoffman, A. R. Yoder, and L. A. Trepanier, Bioavailability of transdermal methimazole in a pluronic lecithin organogel (PLO) in healthy cats, J. Vet. Pharmacol. Ther., 25, 189 (2002).   DOI   ScienceOn
37 S. Mitragotri and J. Kost, Low-frequency sonophoresis, Adv. Drug Deliv. Rev., 56, 589 (2004).   DOI   ScienceOn
38 D. Bommannan, H. Okuyama, P. Stauffer, and R. H. Guy, The use of high-frequency ultrasound to enhance transdermal drug delivery, Pharm. Res., 9, 559 (1992).   DOI   ScienceOn
39 S. Mitragotri, Synergistic effect of enhancers for transdermal drug delivery, Pharm. Res., 17, 1354 (2000).   DOI   ScienceOn
40 R. Z. Aboofazeli, H. Zia, and T. E. Needham, Transdermal delivery of nicardipine: an approach to in vitro permeation enhancement, Drug Deliv., 9, 239 (2002).   DOI   ScienceOn
41 S. Bhatnagar and S. P. Vyas, Organogel-based systems for transdermal delivery of propranolol, J. Microencapsul., 2, 431 (1994).
42 S. H. Jeong, W. G. Cho, J. K. Choi, and J. P. Ryoo, A systematic approach to cosmetic patch development, Cosmet. Toilet., 116(1), 39 (2001).
43 J. Frelichowska, M. Bolzinger, J. Valour, H. Mouaziz, J. Pelletier, and Y. Chevalier, Pickering W/O emulsions: drug release and tropical delivery, Int. J. Pharm., 368, 7 (2009).   DOI
44 S. A. Fotinos, Handbook of Cosmetic Science and Technology, eds. A. O. Barel, M. Paye, and H. I. Maibach, 233, Marcel Dekker Inc., New York (2001).
45 J. Frelichowska, M. Bolzinger, J. Pelletier, J. Valour, and Y. Chevalier, Tropical delivery of lipophilic drugs from O/W pickering emulsions, Int. J. Pharm., 371, 56 (2009).   DOI
46 E. Esposito, R. Cortesi, M. Drechsler, L. Paccamiccio, P. Mariani, C. Contado, E. Stellin, E. Menegatti, F. Bonina, and C. Puglia, Cubosome dispersions as delivery systems for percutaneous administration of indomethacin, Pharm. Res., 22, 2163 (2005).   DOI   ScienceOn
47 L. B. Lopes, D. A. Ferreira, D. Paula, M. T. J. Garcia, J. A. Thomazini, M. C. A. Fantini, and M. V. L. B. Bentley, Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A, Pharm. Res., 23, 1332 (2006).   DOI   ScienceOn
48 C. Nastruzzi and R. Gambari, Antitumor activity of (trans)dermally delivered aromatic tetra-amidines, J. Control Release, 29, 53 (1994).   DOI   ScienceOn
49 F. Dreher, P. Walde, P. Walther, and E. Wehrli, Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport, J. Control. Release, 45, 131 (1997).   DOI   ScienceOn
50 L. B. Lopes, J. L. C. Lopes, D. C. R. Oliveira, J. A. Thomazini, M. T. J. Garcia, M. C. A. Fantini, J. H. Collett, and M. V. L. B. Bentley, Liquid crystalline phases of monoolein and water for topical delivery of cyclosporin A: characterization and study of in vitro and in vivo delivery, Eur. J. Pharm. Biopharm.. 63, 146 (2006).   DOI   ScienceOn
51 L. B. Lopes, F. F. F. Sperettaa, and M. V. L. B. Bentley, Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems, Eur. J. Pharm. Sci., 32, 209 (2007).   DOI   ScienceOn
52 M. Cohen-Avrahami, A. Aserin, and N. Garti, HII mesophase and peptide cell-penetrating enhancers for improved transdermal delivery of sodium diclofenac, Colloid Surf. B, 77, 131 (2010).   DOI   ScienceOn
53 J. Bender, M. B. Ericson, N. Merclin, V. Ianie, A. Rosen, S. Engstrom, and J. Moan, Lipid cubic phases for improved topical drug delivery in photodynamic therapy, J. Control. Release, 106, 350 (2005).   DOI   ScienceOn
54 H. Willimann and P. L. Luisi, Lecithin organogels as matrix for transdermal transport of drugs, Biochem. Biophys. Res. Commun., 177, 897 (1991).   DOI   ScienceOn
55 H. Willimann, P. Walde, P. L. Luisi, A. Gazzaniga, and F. Stroppolo, Lecithin organogels as matrix for transdermal transport of drugs, J. Pharm. Sci., 81, 871 (1992).   DOI
56 R. Kumar and O. P. Katare, Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review, AAPS Pharm. Sci. Tech.. 6, e298 (2005).   DOI
57 S. Y. Lin, C. J. Ho, and M. J. Li, Precision and reproducibility of temperature response of a thermo- responsive membrane embedded by binary liquid crystals for drug delivery, J. Control. Release, 73(2,3), 293 (2001).   DOI
58 S. Y. Lin, H. L. Lin, and M. J. Li, Manufacturing factors affecting the drug delivery function of thermo- responsive membrane prepared by adsorption of binary liquid crystals, Eur. J. Pharm. Sci., 17(3), 153 (2002).   DOI   ScienceOn
59 Y. A. Shchipunov and E. V. Shumilina, Lecithin bridging by hydrogen bonds in the organogel, Mater. Sci. Eng., C, Biomim. Supramol. Syst., 3(1), 43 (1995).   DOI   ScienceOn
60 R. Scartazzini and P. L. Luisi, Organogels from lecithins, J. Phys. Chem., 92, 829 (1988).   DOI
61 D. I. Nesseem, Formulation and evaluation of itraconazole via liquid crystal for topical delivery system, J. Pharm. Biomed. Anal., 26(3), 387 (2001).   DOI   ScienceOn
62 D. S. Mou, H. B. Chen, D. R. Du, C. W. Mao, J. L. Wan, H. B. Xu, and X. L. Yang, Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs, Int. J Pharm., 353, 270 (2008).   DOI   ScienceOn
63 C. C. Muller-Goymann, Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration, Eur. J. Pharm. Biopharm., 58(2), 343 (2004).   DOI   ScienceOn
64 W. K. Fong, T. Hanley, and B. J. Boyd, Stimuli responsive liquid crystals provide 'on-demand' drug delivery in vitro and in vivo, J. Control. Release, 135, 218 (2009).   DOI   ScienceOn
65 D. Libster, A. Aserin, E. Wachtel, G. Shoham, and N. Garti, An $H_{II}$ liquid crystal-based delivery system for cyclosporin A: physical characterization, J. Colloid Interface Sci., 308(2), 514 (2007).   DOI   ScienceOn
66 C. Guo, J. Wang, F. Cao, R. J. Lee, and G. Zhai, Lyotropic liquid crystal systems in drug delivery, Drug Discov. Today, 15, 1032 (2010).   DOI   ScienceOn
67 N. Moussaoui, M. Cansell, and A. Denizot, Marinosomes marine lipid-based liposomes: physical characterization and potential applications in cosmetics, Int. J. Pharm., 242, 361 (2002).   DOI   ScienceOn
68 P. F. Lim, X. Y. Liu, L. Kang, P. C. Ho, Y. W. Chan, and S. Y. Chan, Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol, Int. J. Pharm., 311, 157 (2006).   DOI
69 S. Pisal, V. Shelke, K. Mahadik, and S. Kadam, Effect of organogel components on in vitro nasal delivery of propranolol hydrochloride, AAPS Pharm. Sci. Tech., 5, e63 (2004).   DOI
70 S. Z. Mohammady, M. Pouzot, and R. Mezzenga, Oleoylethanolamide-based lyotropic liquid crystals as vehicles for delivery of amino acids in aqueous environment, Biophys. J., 96(4), 1537 (2009).   DOI   ScienceOn
71 V. B. Patravale and S. D. Mandawgade, Novel cosmetic delivery systems: an application update, Int. J. Cosmet. Sci., 30, 19 (2008).   DOI   ScienceOn
72 K. Stanzl, L. Zastrow, J. Rdding, and C. Artmann, The effectiveness of molecular oxygen in cosmetic formulation, Int. J. Cosmet. Sci., 18(3), 137 (1996).
73 N. Jain, B. P. Gupta, N. Thakur, R. Jain, J. Banweer, D. K. Jain, and S. Jain, Phytosome: a novel drug delivery system for herbal medicine, Int. J. Pharm. Sci. and Drug Res., 2(4), 224 (2010).
74 P. Schurtenberger, R. Scartazzini, L. J. Magid, M. E. Leser, and P. L. Luisi, Structural and dynamic properties of polymer-like reverse micelles, J. Phys. Chem., 94, 3695 (1990).   DOI
75 D. Grace, J. Rogers, K. Skeith, and K. Anderson, Topical diclofenac versus placebo: a double blind, randomized clinical trial in patients with osteoarthritis of the knee, J. Rheumatol., 26, 2659 (1999).
76 F. Dreher, P. Walde, P. Walter, and E. Wehrli, Interaction of a lecithin microemulasion gel with human stratum corneum and its effect on transdermal transport, J. Control. Release, 45, 131 (1997).   DOI   ScienceOn
77 G. Nicolaos, S. Crauste-Manciet, R. Farinotti, and D. Brossard, Improvement of cefpodoxime proxetil oral absorption in rats by an oil-in-water submicron emulsion, Int. J. Pharm., 263, 165 (2003).   DOI
78 D. D. Lasic, Sterically stabilized liposomes in cancer therapy and gene delivery, Curr. Opin. Mol. Ther., 1, 177 (1999).
79 R. Peschka, C. Dennehy, and Jr. F. C. Szoka, A simple in-vitro model to study the release kinetics of liposomes encapsulated material, J. Control. Release, 56, 41 (1998).   DOI
80 L. Kang, X. Y. Liu, P. D. Sawant, P. C. Ho, Y. W. Chan, and S. Y. Chan, SMGA gels for the skin permeation of haloperidol, J. Control. Release, 106, 88 (2005).   DOI   ScienceOn
81 N. G. Kang, J. M. Lim, M. Y. Chang, S. G. Park, W. G. Cho, and Y. S. Choi, Modified superoxide dismutase for cosmeceuticals, IFSCC Magazine, 8(2), 87 (2005).
82 Y. A. Shchipunov and E. V. Shumilina, Lecithin organogels: role of polar solvent and nature of intermolecular interactions, Colloid J., 58, 117 (1996).
83 J. M. Lim, M. Y. Chang, S. G. Park, N. G. Kang, Y. S. Song, Y. S. Kang, and W. G. Cho, The penetration enhancement and lipolytic effects of TATGKH, both in vitro, ex-vivo, and in-vivo, IFSCC Magazine, 7(2), 103 (2004).
84 H. Cesur, I. Rubinstein, A. Pai, and H. Onyuksel, Self-associated indisulam in phospholipid-based nanomicelles: a potential nanomedicine for cancer, Nanomedicine, 5(2), 178 (2009).   DOI   ScienceOn
85 D. C. Drummond, O. Meyer, K. Hong, D. B. Kirpotin, and D. Papahadjopoulos, Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors, Pharmacol Rev., 51, 691 (1999).
86 J. M. Lim, M. Y. Chang, S. G. Park, N. G. Kang, Y. S. Song, Y. H. Lee, Y. C. Yoo, W. G. Cho, S. Y. Choi, and S. H. Kang, Penetration enhancement in mouse skin and lipolysis in adipocytes by TATGKH, a mew cosmetic ingredient, J. Comet. Sci., 54, 483 (2003).
87 S. K. Sahoo and V. Labhasetwar, Nanotech approaches to drug delivery and imaging, Drug Discov. Today, 8, 1112 (2003).   DOI   ScienceOn
88 T. K. Jain, J. Richey, M. Strand, D. L. Leslie- Pelecky, C. A. Flask, and V. Labhasetwar, Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging, Biomaterials. 29, 4012 (2008).   DOI   ScienceOn
89 Z. Chunfu, C. Jinquan, Y. Duanzhi, W. Yongxian, F. Yanlin, and T. Jiaju, Preparation and radiolabeling of human serum albumin (HSA)-coated magnetite nanoparticles for magnetically targeted therapy, Appl. Radiat. Isot., 61, 1255 (2004).   DOI   ScienceOn
90 P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Au nanoparticles target cancer, Nano, Today, 2, 18 (2007).
91 C. H. Purdon, C. G. Azzi, J. Zhang, E. W. Smith, and H. I. Maibach, Penetration enhancement of transdermal delivery-current permutations and limitations, Crit. Rev. Ther. Drug Carrier. Syst., 21, 97 (2004).   DOI
92 D. Moinard-Checot, Y. Chevalier, S. Briancon, L. Beney, and H. Fessi, Mechanism of nanocapsules formation by the emulsion diffusion process, J. Colloid Interface Sci., 317, 458 (2008).   DOI   ScienceOn
93 P. Blasi, S. Giovagnoli, A. Schoubben, M. Ricci, and C. Rossi, Solid lipid nanoparticles for targeted brain drug delivery, Adv. Drug Deliv. Rev., 59, 454 (2007).   DOI   ScienceOn
94 I. I. Slowing, J. L. Vivero-Escoto, C. Wu, and V. S. Li, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers, Adv. Drug Deliv. Rev., 60, 1278 (2008).   DOI   ScienceOn
95 J. Pardeike, A. Hommoss, and R. H. Muller, Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products, Int. J. Pharm., 366, 170 (2009).   DOI   ScienceOn
96 G. Cevc and U. Vierl, Nanotechnology and transdermal route: a state of the art review and critical appraisal, J. Control. Release, 141, 277 (2010).   DOI   ScienceOn
97 P. Karande, A. Jain, and S. Mitragotri, Discovery of transdermal penetration enhancers by high-throughput screening, Nat. Biotechnol., 22, 192 (2004).   DOI   ScienceOn