Browse > Article
http://dx.doi.org/10.15433/ksmb.2017.9.1.008

Comparison of Filtration Efficiency of Membranes for Harvesting Microalgae using a Gravity-Filtration Device  

Shin, Dong-Woo (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University)
Cho, Yonghee (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University)
Kim, Ki-Hyun (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University)
Kim, HanByeol (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University)
Park, Hanwool (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University)
Kim, Z-Hun (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University)
Lim, Sang-Min (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University)
Lee, Choul-Gyun (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University)
Publication Information
Journal of Marine Bioscience and Biotechnology / v.9, no.1, 2017 , pp. 8-13 More about this Journal
Abstract
Cost-effective microalgae harvesting methods are necessary for economical production of algal biodiesel. In this study, membranes with various pore sizes and materials were examined for their potentials in application to gravity-filtration of Tetraselmis sp. KCTC12432BP. For this test, 10 L of Tetraselmis sp. culture (2 g/L) was loaded on each membrane and filtration rates were measured. Among the tested materials, a woven cotton fabric showed the fastest water drain rate (0.73 L/hr) without serious cell leakage. Cell density of the concentrates after filtration was 6.8 g/L, indicating 3.4-fold concentration compared with the initial algal culture. The result suggests that the woven cotton fabric could serve as filtration membrane for harvesting Tetraselmis sp. among the tested ones.
Keywords
microalgae; Tetraselmis sp.; filtration; harvest; membrane;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Peperzak L. F., Koeman C. R., Gieskes W. C., and Joord ens J. C. A. 2003. Phytoplankton sinking rates in the Rhine region of freshwater influence. J. Plankton Res. 25 (4), 365-368.   DOI
2 Ramos Tercero E. A., Domenicali G., and Bertucco A. 2014. Autotrophic production of biodiesel from microalg ae: An updated process and economic analysis. Energy 76, 807-815.   DOI
3 Reyes J. F., and Labra C. 2016. Biomass harvesting and concentration of microalgae Scenedesmus sp. cultivated in a pilot photobioreactor. Biomass Bioenergy 87, 78-83.   DOI
4 Semerjian L., and Ayoub G. M. 2003. High-pH-magnes ium coagulation-flocculation in wastewater treatment. Adv. Environ. Res. 7 (2), 389-403.   DOI
5 Sukenik A., and Shelef G. 1984. Algal autoflocculation -Verification and proposed mechanism. Biotechnol. Bioeng. 26 (2), 142-147.   DOI
6 Shin D.-W., Bae J.-H., Cho Y., Ryu Y.-J., Kim Z-H., Lim S.-M., and Lee C.-G. 2016. Isolation of new microalgae, Tetraselmis sp. KCTC12236BP and biodiesel production using its biomass. J. Mar. Biosci. Biotechnol. 8, 39-44.   DOI
7 Xin C., Addy M. M., Chao J., Cheng Y., Cheng S., Mu D., Liu Y., Ding R., Chen P., and Ruan R. 2016. Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study. Bioresour. Technol. 211, 584-593.   DOI
8 Abomohra A. E.-F., Jin W., Tu R., Han S.-F., and Eid M., Eladel H. 2016. Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and Perspectives. Renew. Sust. Energ. Rev. 64, 596-606.   DOI
9 Barros A. I., Goncalves A. L., Simoes M., and Pires J. C. M. 2015. Harvesting techniques applied to microalgae: A review. Renew. Sust. Energ. Rev. 41, 1489-1500.   DOI
10 Cheah W. Y., Ling T. C., Juan J. C., Lee D.-J., Chang J.-S., and Show P. L. 2016. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production. Bioresour. Technol. 215, 346-356.   DOI
11 Cho Y., Shin D.-W., Lee S., Jeon H., Ryu Y.-J., Lee J.-C., Lim S.-M., and Lee C.-G. 2014. Investigation of microalgal growth, Tetraselmis sp. KCTC12432BP by supplying bicarbonate on the ocean cultivation. J. Mar. Biosci. Biotechnol. 6, 118-122.   DOI
12 Hoffman J., Pate R. C., Drennen T., and Quinn J. C. 2010. Techno-economic assessment of open microalgae production systems. Algal Res. 23, 51-57.
13 Danquah M. K., Ang L., Uduman N., Moheimani N., and Forde G. M. 2009. Dewatering of microalgal culture for biodiesel production: Exploring polymer flocculation and tangential flow filtration. J. Chem. Technol. Biotechnol., 84 (7), 1078-1083.   DOI
14 Das P., Thaher M. I., Abdul Hakim M. A. Q. M., Al-Jabri H. M. S. J., and Alghasal G. S. H. S. 2016. Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media. Bioresour. Technol. 216, 824-829.   DOI
15 Grima E., Belarbi E. H., Fernandez G. A. Medina A. R., and Chisti Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv., 20 (7-8), 491-515.   DOI
16 Jones C. S., and Mayfield S. P. 2012. Algae biofuels: Versatility for the future of bioenergy. Curr. Opin. Biotechnol. 23 (3), 346-351.   DOI
17 Mariam A. H., Abdel G., and Amal H. 2015. Microalgae harvesting methods for industrial production of biodiese l: critical review and comparative analysis. J. Fund. Ren ew. Energ. Appl. 5 (2), 154-179.
18 Michael H., Javier G., Miller T., Beth R., and Stephen M. 2010. Biofuels from algae: challenges and potential. Biofuels 1 (5), 763-784.   DOI