Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.05.445

Bi-Te Core/Shell Nanowires Synthesis Based on On-Film Formation of Nanowires Method for Thermoelectric Applications  

Kang, Joohoon (Department of Materials Science and Engineering, Yonsei University)
Ham, Jinhee (Department of Materials Science and Engineering, Yonsei University)
Roh, Jong Wook (Department of Materials Science and Engineering, Yonsei University)
Noh, Jin-Seo (Department of Materials Science and Engineering, Yonsei University)
Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.5, 2010 , pp. 445-448 More about this Journal
Abstract
For an enhanced thermoelectric performance, one-dimensional heterostructure nanowires were created that consisted of aBi core and Te shell. The structure was fabricated by depositing Te in-situ onto a Bi nanowire grown by our unique OFF-ON (on-film formation of nanowires) method. After examining a cross-sectional TEM image, it was found that diffusive interface was formed between Bi and Te. Selected area electron diffraction revealed that the crystallinity of the Te shell was some what lower compared to the highly single-crystalline Bi core. The Bi-Te core/shell nanowires can be a smart structure that suppresses phonon transport by several scattering mechanisms, making the OFF-ON method the simplest way to realize that structure.
Keywords
nanostructured materials; thermoelectic materials; microstructure; thermal conductivity; deposition;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature 413, 597 (2001)   DOI   ScienceOn
2 B. C. Sales, Science 295, 1248 (2002)   DOI   PUBMED   ScienceOn
3 H. J. Goldsmid, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, p.19 (1995)
4 J. H. Ham, W. Y. Shim, D. H. Kim, S. H. Lee, J. W. Roh, S. W. Sohn, K. H. Oh, P. W. Voorhees, and W. Y. Lee, Nano Letters 9, 2867 (2009)   DOI   ScienceOn
5 F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson, and C. L. Chien, Science 284, 1335 (1999)   DOI   PUBMED   ScienceOn
6 W. Y. Shim, J. H. Ham, K. I. Lee, W. Y. Jeung, Mark Johnson, and W. Y. Lee, Nano Letters 9, 18 (2009)   DOI   ScienceOn
7 J. Heremans, C. M. Thrush, Y. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, and J. F. Mansfield, Phys. Rev. B61, 2921 (2000)
8 Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying, and J. Heremans, Phys. Rev. B61, 4850 (2000)
9 T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. Laforge, Science 297, 2229 (2002)   DOI   PUBMED   ScienceOn
10 M. W. Oh, H. Inui, M. C. Kim, M. H. Oh, and D. M. Wee, J. Kor. Inst. Met. & Mater. 44, 373 (2006)
11 B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008)   DOI   PUBMED   ScienceOn
12 D. M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, Sections E & G. (1995)
13 Y. M. Lin, X. Sun, and M. S. Dresselhaus, Phys. Rev. B62, 4610 (2000)
14 T. M. Tritt, Science 272, 1276 (1996)   DOI   ScienceOn
15 J. H. Kang, J. W. Roh, J. H. Ham, and W. Y. Lee, Nature Materials, submitted