Browse > Article
http://dx.doi.org/10.14478/ace.2022.1013

Preparation and Application of Rehmannia Glutinosa Extract Incorporated Functional Chitosan Based Biomaterials  

Lee, Si-Yeon (Department of Chemical and Biomolecular Engineering, Chonnam National University)
Kim, Kyeong-Jung (Department of Chemical and Biomolecular Engineering, Chonnam National University)
Kim, Youn-Sop (Department of Chemical and Biomolecular Engineering, Chonnam National University)
Yoon, Soon-Do (Department of Chemical and Biomolecular Engineering, Chonnam National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.2, 2022 , pp. 195-201 More about this Journal
Abstract
The main objective of this work is to prepare Rehmannia glutinosa extract (RE) incorporated functional chitosan (CH) based biomaterials and evaluate their physical properties, RE release properties, inhibitory effect of melanogenesis, and antioxidant and elastase inhibitory activities. RE incorporated CH based biomaterials were synthesized by a casting method and UV curing process. The surface and cross sections of prepared biomaterials were characterized by a field emission scanning electron microscope (FE-SEM). The physical properties such as tensile strength and elongation at break were also investigated. To apply the transdermal drug delivery system, RE release properties were examined with pH 4.5, 5.5, and 6.5 buffer solutions and artificial skin test at 36.5 ℃. Results indicated that RE release of RE incorporated biomaterials with/without the addition of plasticizers [glycerol (GL) and citric acid (CA)] at pH 6.5 was about 1.10 times higher than that of at pH 4.5. In addition, results of the artificial skin test verified that RE was released constantly for 6 h. To verify the applicability of the prepared biomaterials, tyrosinase, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and elastase assays were investigated. Results indicated that RE incorporated biomaterials added CA exhibited tyrosinase activation, DPPH radical scavenging activity rate, and elastase activation of 45.12, 89.40, and 59.94%, respectively.
Keywords
Rehmannia glutinosa extract; Transdermal drug delivery system; Tyrosinase inhibition; DPPH radical scavenging activity; Elastase inhibition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Berkland, E. Pollauf, D. W. Pack, and K. Kim, Uniform double-walled polymer microspheres of controllable shell thickness, J. Control. Release, 96, 101-111 (2004).   DOI
2 X. Sun, D. Yu, Z. Ying, C. Pan, N. Wang, F. Huang, J. Ling, and X. Ouyang, Fabrication of ion-crosslinking aminochitosan nanoparticles for encapsulation and slow release of curcumin, Pharmaceutics, 11, 584 (2019).   DOI
3 J. L. Frandsen, and H. Ghandehari, Recombinant protein-based polymers for advanced drug delivery, Chem. Soc. Rev., 41, 2696- 2706 (2012).   DOI
4 H. Marwah, T. Garg, A. K. Goyal, and G. Rath, Permeation enhancer strategies in transdermal drug delivery, Drug Deliv., 23, 564-578 (2016).   DOI
5 L. S. Nair, and C. T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci., 32, 762-798 (2007).   DOI
6 Y. H. Yun, C. M. Lee, Y. S. Kim, and S. D. Yoon, Preparation of chitosan/polyvinyl alcohol blended films containing sulfosuccinic acid as the crosslinking agent using UV curing process, Food Res. Int., 100, 377-386 (2017).   DOI
7 Y. O. Son, S. A. Lee, S. S. Kim, Y. S. Jang, J. C. Chun, and J. C. Lee, Acteoside inhibits melanogenesis in B16F10 cells through ERK activation and tyrosinase down-regulation, J. Pharm. Pharmacol, 63, 1309-1319 (2011).   DOI
8 J. K. Kim, H. J. Kim, J. Y. Chung, J. H. Lee, S. B. Young, and Y. H. Kim, Natural and synthetic biomaterials for controlled drug delivery, Arch. Pharm. Res., 37, 60-68 (2014).   DOI
9 X. Y. Liu, S. Jeshycka, and H. J. Lee, Electrochemical study on transfer reaction of ionizable cefotiam across a water/1,2-dichloroethane interface and drug sensing applications, Appl. Chem. Eng., 29, 581-588 (2018).   DOI
10 H. Lee, Y. Kim, H. J. Kim, S. Park, Y. P. Jang, S. Jung, H. Jung, and H. Bae, Herbal formula, PM014, attenuates lung inflammation in a murine model of chronic obstructive pulmonary disease, Evid. based. Compl. Alt., 2012, 1-10 (2012).
11 C. L. Liu, L. Cheng, C. H. Ko, C. W. Wong, W. H. Cheng, D. W. S. Cheung, P. C. Leung, K. P. Fung, and C. B. S. Lau, Bioassay-guided isolation of anti-inflammatory components from the root of Rehmannia glutinosa and its underlying mechanism via inhibition of iNOS pathway, J. Ethnopharmacol., 143, 867-875 (2012).   DOI
12 M. A. Birch-Machin, and A. Bowman, Oxidative stress and ageing, Brit. J. Dermatol., 175, 26-29 (2016).   DOI
13 M. Q. Zhang, X. Ren, Q. Zhao, S. J. Yue, X. M. Fu, X. Li, K. X. Chen, Y. W. Guo, C. L. Shao, and C. Y. Wang, Hepatoprotective effects of total phenylethanoid glycosides from Acanthus ilicifolius L. against carbon tetrachloride-induced hepatotoxicity, J. Ethnopharmacol., 256, 112795 (2020).   DOI
14 N. Azmi, P. Hashim, D. M. Hashim, N. Halimoon, and N. M. N. Majid, Anti-elastase, anti-tyrosinase and matrix metalloproteinase-1 inhibitory activity of earthworm extracts as potential new anti-aging agent, Asian Pac. J. Trop. Med., 4, S348-S352 (2014).   DOI
15 B. Madhan, G. Krishnamoorthy, J. R. Rao, and B. U. Nair, Role of green tea polyphenols in the inhibition of collagenolytic activity by collagenase, Int. J. Biol. Macromol., 41, 16-22 (2007).   DOI
16 H. H. Yu, S. J. Seo, Y. H. Kim, H. Y. Lee, R. K. Park, H. S. So, S. I. Jang, and Y. O. You, Protective effect of Rehmannia glutinosa on the cisplatin-induced damage of HEI-OC1 auditory cells through scavenging free radicals, J. Ethnopharmacol., 107, 383-388 (2006).   DOI
17 E. W. C Chan, Y. Y. Lim, L. F. Wong, F. S. Lianto, S. K. Wong, K. K. Lim, C. E. Joe, and T. Y. Lim, Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species, Food Chem., 109, 477-483 (2008).   DOI
18 T. Pillaiyar, M. Manickam, and V. Namasivayam, Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors, J. Enzyme Inhib. Med. Chem., 32, 403-425 (2017).   DOI
19 A. L. N. Pagning, J. D. D. Tamokou, M. Lateef. L. A. Tapondjou, J. R. Kuiate, D. Ngnokam, and M. S. Ali, New triterpene and new flavone glucoside from Rhynchospora corymbosa (Cyperaceae) with their antimicrobial, tyrosinase and butyrylcholinesterase inhibitory activities, Phytochem. Lett., 16, 121-128 (2016).   DOI
20 S. A. Rafiee, R. Farhoosh, and A. Sharif, Antioxidant activity of gallic acid as affected by an extra carboxyl group than pyrogallol in various oxidative environments, Eur. J. Lipid. Sci. Tech, 120, 1800319 (2018).   DOI
21 G. D. Liyanaarachchi, J. K. R. R. Samarasekera, K. R. R. Mahanama, and K. D. P. Hemalal, Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals, Ind. Crop. Prod., 111, 597-605 (2018).   DOI
22 K. Mishra, H. Ojha, and N. K. Chaudhury, Estimation of anti-radical properties of antioxidants using DPPH assay: A critical review and results, Food Chem., 130, 1036-1043 (2012).   DOI
23 K. K. Lee, J. H. Kim, J. J. Cho, and J. D. Choi, Inhibitory effects of 150 plant extracts on elastase activity, and their anti-inflammatory effects, Int. J. Cosmetic Sci., 21, 71-82 (1999).   DOI
24 G. Miliauskas, P. R. Venskutonis, and T. A. Van Beek, Screening of radical scavenging activity of some medicinal and aromatic plant extracts, Food Chem., 85, 231-237 (2004).   DOI
25 W. Lai, C. Hu, G. Deng, K. Lui, X. Wang, T. Tsoi, S. Wang, and W. Wong, A biocompatible and easy-to-make polyelectrolyte dressing with tunable drug delivery properties for wound care, Int. J. Pharm., 566, 101-110 (2019).   DOI
26 S. Hafeez, A. Islam, N. Gull, A. Ali, S. M. Khan, S. Zia, K. anwar, S. U. Khan, and T. Jamil, γ-Irradiated chitosan based injectable hydrogels for controlled release of drug (Montelukast sodium), Int. J. Biol. Macromol., 114, 890-897 (2018).   DOI
27 R. X. Zhang, M. X. Li, and Z. P. Jia, Rehmannia glutinosa: review of botany, chemistry and pharmacology. J. Ethnopharmacol, 117, 199-214 (2008).   DOI
28 H. S. Kim, K. J. Kim, M. W. Lee, S. Y. Lee, Y. H. Yun, W. G. Shim, and S. D. Yoon, Preparation and release properties of arbutin imprinted inulin/polyvinyl alcohol biomaterials, Int. J. Biol. Macromol., 161, 763-770 (2020).   DOI
29 L. J. R. Foster, S. Ho, J. Hook, M. Basuki, and H. Marcal, Chitosan as a Biomaterial: Influence of degree of deacetylation on its physiochemical, material and biological properties, Plos One, 10, e0135153 (2015).   DOI
30 K. Subramanian, B. Sadaiappan, W. Aruni, A. Kumarappan, R. Thirunavukarasu, G. P. Srinivasan, S. Bharathi, P. Nainangu, P. S. Renuga, A. Elamaran, D. Balaraman, and M. Subramanian, Bioconversion of chitin and concomitant production of chitinase and N-acetylglucosamine by novel Achromobacter xylosoxidans isolated from shrimp waste disposal area, Sci. Rep. UK., 10, 1-14 (2020).   DOI
31 T. Yokozawa, H. Y. Kim, and N. Tamabe, Amelioration of diabetic nephropathy by dried Rehmanniae Radix (Di Huang) extract, Am. J. Chin. Med., 32, 829-839 (2004).   DOI
32 T. M. Allen, and P. R. Cullis, Drug delivery systems: entering the mainstream. Science, 303, 1818-1822 (2004).   DOI
33 H. Y. Tak, Y. H. Yun, C. M. Lee, and S. D. Yoon, Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch, Carbohyd. Polym., 208, 261-268 (2019).   DOI
34 K. O. Oh, S. W. Kim, J. Y. Kim, S. Y. Ko, H. M. Kim, J. H. Baek, H. M. Ryoo, and J. K. Kim, Effect of Rehmannia glutinosa Libosch extracts on bone metabolism, Clin. Chim. Acta., 334, 185-195 (2003).   DOI