Browse > Article

A Study on Pyrolysis Characterization and Heating Value of Semi-carbonized Wood Chip  

Kim, Ki-Seok (Department of Chemistry, Inha University)
Choi, Eun-A (Department of Chemistry, Inha University)
Ryu, Jeong-Seok (Engineering Development Team, Construction Department, Korea East-West Power)
Lee, Yong Pyo (Engineering Development Team, Construction Department, Korea East-West Power)
Park, Jong-Yeon (Engineering Development Team, Construction Department, Korea East-West Power)
Choi, Seung-Ho (Engineering Development Team, Construction Department, Korea East-West Power)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Applied Chemistry for Engineering / v.23, no.5, 2012 , pp. 440-444 More about this Journal
Abstract
In this work, a semi-carbonized wood chip (SC-WC) was prepared by heat-treatment at low carbonization temperature. The pyrolysis characterization and heating value of the SC-WC at different heat-treatment temperature were evaluated. The pyrolysis characterization and heating value of the SC-WC were determined using thermal gravimetric analyzer (TGA) in $N_{2}$ atmosphere and calorimeter, respectively. From the TGA results, the thermal decomposition reaction of the SC-WC treated at by low temperature was similar to pure wood chip and the reaction was most actively occurred in the range of $200^{\circ}C$ to $400^{\circ}C$, whereas the initial thermal decomposition temperature of the SC-WC increased with the increasing heat-treatment temperature. In addition, the heating value of the SC-WC showed a similar trend as to the decamposition temperature behavior. This is probably attributed to increased carbon content of SC-WC by the localized carbonization of the wood chip which consisted of cellulose, hemi-cellulose, and lignin.
Keywords
wood chip; pyrolysis; heating value; semi-carbonization; thermal decomposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Timmons and C. V. Mejía, Biomass Bioenergy, 34, 1419 (2010).   DOI   ScienceOn
2 M. V. de Velden, J. Baeyens, A. Brems, B. Janssens, and R. Dewil, Renew. Energ., 35, 232 (2010).   DOI   ScienceOn
3 K. Papadikis, S. Gu, and A. V. Bridgwater, Chem. Eng. J., 149, 417 (2009).   DOI   ScienceOn
4 K. Kamimura, H. Kuboyama, and K. Yamamoto, Biomass Bioenergy, 36, 107 (2012).   DOI
5 H. Viana, W. B. Cohen, D. Lopes, and J. Aranha, Appl. Energy, 87, 2551 (2010).   DOI   ScienceOn
6 V. Dornburg and A. P. C. Faaij, Biomass Bioenergy, 21, 91 (2001).   DOI   ScienceOn
7 J. Chau, T. Sowlati, S. Sokhansanj, F. Preto, S. Melin, and X. Bi, Appl. Energy, 86, 616 (2009).   DOI   ScienceOn
8 B. Schneider and M. Kaltschmitt, Ecol. Eng., 16, 123 (2000).   DOI
9 M. R. Wu, D. L. Schott, and G. Lodewijks, Biomass Bioenergy, 35, 2093 (2011).   DOI   ScienceOn
10 T. Yoshida, H. Sasaki, T. Takano, and O. Sawabe, Biomass Bioenergy, 34, 1053 (2010).   DOI   ScienceOn
11 W. G. Glasser, L. In, R. P. Overend, T. A. Milne, and L. K. Mudge, ed. Fundamentals of biomass thermochemical conversion, London: Elsevier (1985).
12 C. D. Blasi, Prog. Energy Combust. Sci., 34, 47 (2008).   DOI   ScienceOn
13 S. Y. Yorulmaz and A. T. Atimtay, Fuel Proc. Technol., 90, 939 (2009).   DOI   ScienceOn
14 D. W. Kim, J. M. Lee, J. S. Kim, and P. K. Seom, Korean Chem. Eng. Res., 48, 58 (2010).
15 D. L. Pyle and C. A. Zaror, Chem. Eng. Sci., 19, 147 (1984).
16 M. J. Antal and G. Varhegyi, Ind. Eng. Chem. Res., 34, 703 (1995).   DOI   ScienceOn
17 P. McKendry, Bioresource Technol., 83, 37 (2002).   DOI   ScienceOn
18 M. H. Duku, S. Gu, and E. B. Hagan, Renew. Sust. Energ. Rev., 15, 404 (2011).   DOI   ScienceOn