Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.6.324

Effect of Needle-Like NiO Protecting Layer on NiCrAl Alloy Foam by Controlled Oxygen Concentration  

Lee, Young-Geun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Shin, Dong-Yo (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.28, no.6, 2018 , pp. 324-329 More about this Journal
Abstract
Needle-like NiO protecting layers on NiCrAl alloy foam, used as support for hydrogen production, are introduced through electroplated Ni and subsequent microwave annealing. To improve the stability of the NiCrAl alloy foam, oxygen concentration of microwave annealing to form a needle-like NiO layer with good chemical stability and corrosion resistance is controlled in a range of 20 and 50 %. As the oxygen concentration increases to 50 %, needle-like NiO forms a dense coating layer on the NiCrAl alloy foam; this layer formation can be attributed to accelerated growth of the (200) plane. In addition, the increased oxygen concentration causes increased NiO/Ni ratio of the resultant coating layer on NiCrAl alloy foam due to improved rate of the oxidation reaction. As a result, the introduction of dense needle-like NiO layers formed at 50 % oxygen concentration improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the electrolyte and the foam. Thus, needle-like NiO can be proposed as a superb protecting layer to improve the chemical stability of NiCrAl alloy form.
Keywords
NiO protecting layer; NiCrAl alloy foam; oxygen concentration; electroplating; microwave annealing;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 R. Manabe, S. Okada, R. Inagaki, and K. Oshima, Sci. Rep., 6, 38007 (2016).   DOI
2 K. S. Go, S. R. Son, S. D. Kim, K. S. Kang, and C. S. Park, Int. J. Hydrogen Energy, 34, 1301 (2009).   DOI
3 Y. G. Lee, G. H. An, and H. J. Ahn, Korean J. Mater. Res., 28, 182 (2018).   DOI
4 L. Barelli, G. Bidini, F. Gallorini, and S. Servili, Energy, 33, 554 (2018).
5 Y. J. Lee, B. R. Koo, S. H. Baek, M. H. Park, and H. J. Ahn, Korean J. Mater. Res., 25, 391 (2015).   DOI
6 D. Y. Shin, J. W. Be, B. R. Koo, and H. J. Ahn, Korean J. Mater. Res., 27, 390 (2017).   DOI
7 D. Y. Sin, E. H. Lee, M. H. Park, and H. J. Ahn, Korean J. Mater. Res., 26, 393 (2016).   DOI
8 Y. Ding and E. Alpay, Chem. Eng. Sci., 55, 3929 (2000).   DOI
9 H. M. Fjeld, D. Clark, I. Y. Tirados, R. Zanon, D. C. Martinez, D. Beeaff, S. H. Morejudo, P. K. Vestre, T. Norby, R. Haugsrud, J. M. Serra, and C. Kjolseth, Nat. Energy, 2, 923 (2017).   DOI
10 A. M. Adris, C. J. Lim, and J. R. Grace, Chem. Eng. Sci., 52, 1609 (1997).   DOI
11 A. P. Simpon and A. E. Lutz, Int. J. Hydrogen Energy, 32, 4811 (2007).   DOI
12 H. Choe and D. C. Dunand, Acta Mater., 52, 1283 (2004).   DOI
13 Q. Pang, Z. Y. Xiu, G. H. Wu, L. T. Jiang, D. L. Sun, and Z. L. Hu, J. Mater. Process Technol., 212, 2219 (2012).   DOI
14 H. Choe and D. C. Dunand, Mater. Sci. Eng., A, 384, 184 (2004).   DOI
15 B. Kucharczyk, W. Tylus, and L. Kepinski, Appl. Catal., B, 49, 27 (2004).   DOI
16 X. Yu, S.-T. Tu, Z. Wang, and Y. Qi, J. Power sources, 150, 57 (2005).   DOI
17 B.-H. Kang, J. Park, K. Park, and D. Yoo, Korean J. Mater. Res., 26, 714 (2016).   DOI
18 R. A. Patil, C.-W. Su, C.-J. Chuang, C.-C Lai, Y. Liou, and Y.-R. Ma, Nanoscale, 8, 12970 (2016).   DOI
19 X. Song and L. Gao, J. Am. Ceram. Soc., 91, 3465 (2008).   DOI
20 M. A. Bhosale and B. M. Bhanage, Adv. Powder Technol., 26, 422 (2015).   DOI
21 K.-C. Wang, P.-S. Shen, M.-H. Li, S. Chen, M.-W. Lin, P. Chen, and T.-F. Guo, ACS Appl. Mater. Interfaces, 6, 11851 (2014).   DOI
22 R. Betancur, M. Maymo, X. Elias, L. T. Vuong, and J. Martorell, Sol. Energy Mater. Sol. Cells, 95, 735 (2011).   DOI
23 T. Terachi, N. Totsuka, T. Yamada, T. Nakagawa, H. Deguchi, M. Horiuchi, and M. Oshitani, J. Nucl. Sci. Technol., 40, 509 (2003).   DOI
24 Q. pang, Z. L. Hu, and D. L. Sun, Vacuum, 129, 86 (2016).   DOI
25 A. Velon and I. Olefjord, Oxid. Met., 56, 415 (2001).   DOI