Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.7.347

Analysis of Electrical Characteristics of Oxide Semiconductor of ZnO, SnO2 and ZTO  

Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
Publication Information
Korean Journal of Materials Research / v.25, no.7, 2015 , pp. 347-351 More about this Journal
Abstract
To study the characteristics of ZTO, which is made using a target mixed $ZnO:SnO_2=1:1$, the ZnO and $SnO_2$ were analyzed using PL, XRD patterns, and electrical properties. Resulting characteristics were compared with the electrical characteristics of ZnO, $SnO_2$, and ZTO. The electrical characteristics of ZTO were found to improve with increasing of the annealing temperature due to the high degree of crystal structures at high temperature. The crystal structure of $SnO_2$ was also found to increase with increasing temperatures. So, the structure of ZTO was found to be affected by the annealing temperature and the molecules of $SnO_2$; the optical property of ZTO was similar to that of ZnO. Among the ZTO films, ZTO annealed at the highest temperature showed the highest capacitance and Schottky contact.
Keywords
ZnO; $SnO_2$; ZTO; XRD; PL spectra; capacitance;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 G. Kenugapal and S. -J. Kim, Current Appl. Phys., 11, S381 (2011).   DOI   ScienceOn
2 S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa and M. Kawasaki1, Appl. Phys. Lett., 93, 123309 (2008).   DOI   ScienceOn
3 W. T. Chen, S. Y. Lo, S. C. Kao, H. W. Zan, C. C. Tsai, J. H. Lin, C. H. Fang and C. C. Lee, IEEE Electron. Dev. Lett., 32, 1552 (2011).   DOI   ScienceOn
4 S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen and W. C. Wub, Solid State Electronics, 54, 1497 (2010).   DOI   ScienceOn
5 D. W. Jeong, J. J. Kim and J. O Lee, J. Korean Phys. Soc., 59(5), 3133 (2011).   DOI   ScienceOn
6 K. Nomura, T. Kamiya and H. Hosono, Adv. Mater., 23, 3431 (2011).   DOI   ScienceOn
7 J. S. Lee, Y. J. Kwack and W. S. Choi, J. Korean Phys. Soc., 59(5), 3305 (2011).
8 D. Cha, S. Lee, J. Jung and I. An, J. Korean Phys. Soc., 56(3), 846 (2010).   DOI   ScienceOn
9 J. Maserjian, J. Vac. Sci. Technol., 11, 996 (1974).   DOI
10 K. Nomura, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, Appl. Phys. Lett., 93, 192107 (2008).   DOI   ScienceOn
11 O. Mitrofanov and M. Mantra, J. Appl. Phys., 95, 6414 (2004).   DOI   ScienceOn
12 M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins and I. Ferreira, Appl. Phys. Lett., 95, 063502 (2009).   DOI   ScienceOn
13 T. Oh and C. K. Choi, J. Korean Phys. Soc., 56, 1150 (2010).   DOI   ScienceOn
14 Y. Y. Peng, T. E. Hsieh and C. H. Hsu, Nanotechnology, 17, 174 (2006)   DOI   ScienceOn
15 J. Maserjian and N. Zamani, Appl. Phys. Lett., 53, 559 (1982).
16 J. Heo, H. J. Kim, J. H. Han and J. W. Shon, Thin Solid Films, 515, 5035 (2007).   DOI   ScienceOn
17 J. G. Simmons, Phys. Rev., 155, 657 (1967).   DOI