Browse > Article
http://dx.doi.org/10.3740/MRSK.2006.16.11.710

The Effect of Hydroxy Ethyl Cellulose(HEC) on the Surface Morphology and Mechanical Characteristis of Copper Electrodeposition  

Woo, Tae-Gyu (Division of Advanced Materials Engineering and Research Center of Industrial Technology, Chonbuk National University)
Park, Il-Song (Division of Advanced Materials Engineering and Research Center of Industrial Technology, Chonbuk National University)
Lee, Hyun-Woo (Division of Advanced Materials Engineering and Research Center of Industrial Technology, Chonbuk National University)
Seol, Kyeong-Won (Division of Advanced Materials Engineering and Research Center of Industrial Technology, Chonbuk National University)
Publication Information
Korean Journal of Materials Research / v.16, no.11, 2006 , pp. 710-714 More about this Journal
Abstract
The purpose of this study is to identify the effect of additives and composition on copper surface morphology and mechanical characteristics by copper electrodeposition. Additives such as hydroxy ethyl cellulose(HEC), chloride ion were used in this study. Electrochemical experiments allied to SEM, XRD, AFM and four- point probe were performed to characterize the morphology and mechanical characters of copper in the presence of additives. Among various electrodeposition conditions, the minimum surface roughness of copper foil was obtained when electrodeposited at the current density of 200 mA/$cm^2$ for 68 seconds with 2 ppm of HEC. The minimum value of surface roughness(Rms) was 107.6 nm. It is copper foil is good for electromigration inhibition due to preferential crystal growth of Cu (111) deposited in the electrolyte containing chloride ions(10 ppm) and HEC(1 ppm).
Keywords
Electrodeposition; HEC; FPCB; Polyimide; Platinum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. L. Sartorelli, A. Q. Schervenski, R. G. Delatorre and P. Klauss, Phys. stat. sol, 187, 91 (2001)   DOI   ScienceOn
2 C. H. Yang, S. C. Lee, J, M. Wu and T. C. Lin, Appl, Surface Sci., 252, 1818 (2005)   DOI   ScienceOn
3 R. R. Tummala and E. J. Rymaszewski, Microelectronics Packaging Handbook, Van Nostrand Reinhold, New York, (1989)
4 A. P. Payne and B. M. Clemens, J. Mater. Res., 7, 1370 (1992)   DOI
5 H. J. Kang, P. N. Park, S. J. Park and S. Y. Choi, Electro. Technol. Res., 203, 8 (2003)
6 T. Fukada, M. Hasegawa, Y. Toyda, K. Sato, M. Nunoshita and H. Kotani, Ext. Abs. 53rd Autumn Meeting, Jpn. Soc. Appl, Phys., 18p-ZR-3 (1992)
7 J. Li. Y. Shacham-Diamond, J. W. Mayer and E. G. Colgan, Proc. VMIC Coference, 153 (1991)   DOI
8 H. J. Lee. Ph.D. Thesis, P. 4, Seoul National University, Seoul (2003)
9 R. Haight, R. C. White, B. D. Silverman and P. S. Ho, J. Vac. Sci. Technol., A, Vac. Surf. Films, 6, 2188 (1988)   DOI
10 D. S. Dunn and J. L. Grant, J. Vac. Sci. Technol., A, Vac. Surf. Films, 7, 253 (1989)   DOI
11 S. H. Kim, S. W. Na, N. E. Lee, Y. W. Nam and Y. H. Kim, Surf. Coat. Technol., 200, 2072 (2005)   DOI   ScienceOn
12 H. S. Lee, H. S. Kim and C. M. Lee, J. Kor. Inst. Met. & Mater., 39, 920 (2001)
13 J. L. Vossen and Werner Kern, Thin film process Academc press, New York, San Francisco, London (1978)
14 J. Kim, S. H. Wen and D. Yee, J. Vac. Sci. Technol., A6, 2366 (1988)   DOI
15 T. X. Liang, Y. Q. Liu, Z. Q. Fu, Z. Q. Luo and K. Y. Zhang, This Solid films, 473, 247 (2005)   DOI   ScienceOn
16 A. G Dirks and J. J. van den Broek, J. Vac. Sci. Technol., A3, 2618 (1985)   DOI
17 C. J. Wang, C. A. Chang, C. E. Farrel and A. G Schrott, Appl, Phys. Lett., 62, 654 (1993)   DOI
18 M. M. D. Ramos, A. M. Stoncham and A. P. Sutton, Acta metall. mater, 41, 2105 (1993)
19 S. H Kim, D. W. Lee and K. H. Chung, Kor. J. Mater. Res., 9, 65 (1999)