Browse > Article
http://dx.doi.org/10.11620/IJOB.2019.44.2.37

Role of proteases, cytokines, and growth factors in bone invasion by oral squamous cell carcinoma  

Son, Seung Hwa (Oral Cancer Research Institute, Yonsei University College of Dentistry)
Chung, Won-Yoon (Oral Cancer Research Institute, Yonsei University College of Dentistry)
Publication Information
International Journal of Oral Biology / v.44, no.2, 2019 , pp. 37-42 More about this Journal
Abstract
Oral squamous cell carcinoma (OSCC) is the most common oral malignancy and an increasing global public health problem. OSCC frequently invades the jaw bone. OSCC-induced bone invasion has a significant impact on tumor stage, treatment selection, patient outcome, and quality of life. A number of studies have shown that osteoclast-mediated bone resorption is a major step in the progression of bone invasion by OSCC; however, the molecular mechanisms involved in OSCC bone invasion are not yet clear. In this review, we present the clinical types of OSCC bone invasion and summarize the role of key molecules, including proteases, cytokines, and growth factors, in the sequential process of bone invasion. A better understanding of bone invasion will facilitate the discovery of molecular targets for early detection and treatment of OSCC bone invasion.
Keywords
Oral squamous cell carcinoma; Bone invasion; Growth factors; Cytokines; Proteases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nakashima T, Takayanagi H. The dynamic interplay between osteoclasts and the immune system. Arch Biochem Biophys 2008;473:166-71. doi: 10.1016/j.abb.2008.04.004.   DOI
2 Bar-Shavit Z. The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 2007;102:1130-9. doi: 10.1002/jcb.21553.   DOI
3 Dewhirst FE, Stashenko PP, Mole JE, Tsurumachi T. Purification and partial sequence of human osteoclastactivating factor: identity with interleukin 1 beta. J Immunol 1985;135:2562-8.
4 Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 2006;24:33-63. doi: 10.1146/annurev.immunol.24.021605.090646.   DOI
5 Datta NS, Abou-Samra AB. PTH and PTHrP signaling in osteoblasts. Cell Signal 2009;21:1245-54. doi: 10.1016/j.cellsig.2009.02.012.   DOI
6 Soki FN, Park SI, McCauley LK. The multifaceted actions of PTHrP in skeletal metastasis. Future Oncol 2012;8:803-17. doi: 10.2217/fon.12.76.   DOI
7 Panda S, Padhiary SK, Routray S. Chemokines accentuating protumoral activities in oral cancer microenvironment possess an imperious stratagem for therapeutic resolutions. Oral Oncol 2016;60:8-17. doi: 10.1016/j.oraloncology.2016.06.008.   DOI
8 Bonfil RD, Chinni S, Fridman R, Kim HR, Cher ML. Proteases, growth factors, chemokines, and the microenvironment in prostate cancer bone metastasis. Urol Oncol 2007;25:407-11. doi: 10.1016/j.urolonc.2007.05.008.   DOI
9 Gronthos S, Zannettino AC. The role of the chemokine CXCL12 in osteoclastogenesis. Trends Endocrinol Metab 2007;18:108-13. doi: 10.1016/j.tem.2007.02.002.   DOI
10 Sambandam Y, Sundaram K, Liu A, Kirkwood KL, Ries WL, Reddy SV. CXCL13 activation of c-Myc induces RANK ligand expression in stromal/preosteoblast cells in the oral squamous cell carcinoma tumor-bone microenvironment. Oncogene 2013;32:97-105. doi: 10.1038/onc.2012.24.   DOI
11 Yuvaraj S, Griffin AC, Sundaram K, Kirkwood KL, Norris JS, Reddy SV. A novel function of CXCL13 to stimulate RANK ligand expression in oral squamous cell carcinoma cells. Mol Cancer Res 2009;7:1399-407. doi: 10.1158/1541-7786.MCR-08-0589.   DOI
12 Pandruvada SN, Yuvaraj S, Liu X, Sundaram K, Shanmugarajan S, Ries WL, Norris JS, London SD, Reddy SV. Role of CXC chemokine ligand 13 in oral squamous cell carcinoma associated osteolysis in athymic mice. Int J Cancer 2010;126:2319-29. doi: 10.1002/ijc.24920.   DOI
13 Oue E, Lee JW, Sakamoto K, Iimura T, Aoki K, Kayamori K, Michi Y, Yamashiro M, Harada K, Amagasa T, Yamaguchi A. CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction. Biochem Biophys Res Commun 2012;424:456-61. doi: 10.1016/j.bbrc.2012.06.132.   DOI
14 Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys 2008;473:201-9. doi: 10.1016/j.abb.2008.03.027.   DOI
15 Goda T, Shimo T, Yoshihama Y, Hassan NM, Ibaragi S, Kurio N, Okui T, Honami T, Kishimoto K, Sasaki A. Bone destruction by invading oral squamous carcinoma cells mediated by the transforming growth factor-beta signalling pathway. Anticancer Res 2010;30:2615-23.
16 Papadimitrakopoulou VA, Brown EN, Liu DD, El-Naggar AK, Jack Lee J, Hong WK, Lee HY. The prognostic role of loss of insulin-like growth factor-binding protein-3 expression in head and neck carcinogenesis. Cancer Lett 2006;239:136-43. doi: 10.1016/j.canlet.2005.08.009.   DOI
17 Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359-86. doi:10.1002/ijc.29210.   DOI
18 Partridge M, Kiguwa S, Luqmani Y, Langdon JD. Expression of bFGF, KGF and FGF receptors on normal oral mucosa and SCC. Eur J Cancer B Oral Oncol 1996;32B:76-82. doi:10.1016/0964-1955(95)00056-9.
19 Quan J, Elhousiny M, Johnson NW, Gao J. Transforming growth factor-${\beta}$1 treatment of oral cancer induces epithelial-mesenchymal transition and promotes bone invasion via enhanced activity of osteoclasts. Clin Exp Metastasis 2013;30:659-70. doi: 10.1007/s10585-013-9570-0.   DOI
20 Gao J, Ma Y, Shen J, Yao H. TGF-${\beta}$ promotes invasion and angiogenesis of oral squamous cell carcinoma SCC9 cells by upregulation of slug signal. Int J Clin Exp Pathol 2017;10:5325-33.
21 Brown JS, Lowe D, Kalavrezos N, D'Souza J, Magennis P, Woolgar J. Patterns of invasion and routes of tumor entry into the mandible by oral squamous cell carcinoma. Head Neck 2002;24:370-83. doi: 10.1002/hed.10062.   DOI
22 Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 2009;45:309-16. doi: 10.1016/j.oraloncology.2008.06.002.   DOI
23 Jimi E, Shin M, Furuta H, Tada Y, Kusukawa J. The RANKL/RANK system as a therapeutic target for bone invasion by oral squamous cell carcinoma (Review). Int J Oncol 2013;42:803-9. doi: 10.3892/ijo.2013.1794.   DOI
24 Attar E, Dey S, Hablas A, Seifeldin IA, Ramadan M, Rozek LS, Soliman AS. Head and neck cancer in a developing country:a population-based perspective across 8 years. Oral Oncol 2010;46:591-6. doi: 10.1016/j.oraloncology.2010.05.002.   DOI
25 Choi S, Myers JN. Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res 2008;87:14-32. doi: 10.1177/154405910808700104.   DOI
26 Petti S. Lifestyle risk factors for oral cancer. Oral Oncol 2009;45:340-50. doi: 10.1016/j.oraloncology.2008.05.018.   DOI
27 Jimi E, Furuta H, Matsuo K, Tominaga K, Takahashi T, Nakanishi O. The cellular and molecular mechanisms of bone invasion by oral squamous cell carcinoma. Oral Dis 2011;17:462-8. doi:10.1111/j.1601-0825.2010.01781.x.   DOI
28 Lubek JE, Magliocca KR. Evaluation of the bone margin in oral squamous cell carcinoma. Oral Maxillofac Surg Clin North Am 2017;29:281-92. doi: 10.1016/j.coms.2017.03.005.   DOI
29 Ito M, Izumi N, Cheng J, Sakai H, Shingaki S, Nakajima T, Oda K, Saku T. Jaw bone remodeling at the invasion front of gingival squamous cell carcinomas. J Oral Pathol Med 2003;32:10-7. doi: 10.1034/j.1600-0714.2003.00139.x.   DOI
30 Shaw RJ, Brown JS, Woolgar JA, Lowe D, Rogers SN, Vaughan ED. The influence of the pattern of mandibular invasion on recurrence and survival in oral squamous cell carcinoma. Head Neck 2004;26:861-9. doi: 10.1002/hed.20036.   DOI
31 Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem 2010;285:25103-8. doi:10.1074/jbc.R109.041087.   DOI
32 Erdem NF, Carlson ER, Gerard DA, Ichiki AT. Characterization of 3 oral squamous cell carcinoma cell lines with different invasion and/or metastatic potentials. J Oral Maxillofac Surg 2007;65:1725-33. doi: 10.1016/j.joms.2006.11.034.   DOI
33 Georges S, Ruiz Velasco C, Trichet V, Fortun Y, Heymann D, Padrines M. Proteases and bone remodelling. Cytokine Growth Factor Rev 2009;20:29-41. doi: 10.1016/j.cytogfr.2008.11.005.   DOI
34 Woodward JK, Holen I, Coleman RE, Buttle DJ. The roles of proteolytic enzymes in the development of tumourinduced bone disease in breast and prostate cancer. Bone 2007;41:912-27. doi: 10.1016/j.bone.2007.07.024.   DOI
35 Krane SM, Inada M. Matrix metalloproteinases and bone. Bone 2008;43:7-18. doi: 10.1016/j.bone.2008.03.020.   DOI
36 Chuang HC, Su CY, Huang HY, Huang CC, Chien CY, Du YY, Chuang JH. Active matrix metalloproteinase-7 is associated with invasion in buccal squamous cell carcinoma. Mod Pathol 2008;21:1444-50. doi: 10.1038/modpathol.2008.99.   DOI
37 Thiolloy S, Halpern J, Holt GE, Schwartz HS, Mundy GR, Matrisian LM, Lynch CC. Osteoclast-derived matrix metalloproteinase-7, but not matrix metalloproteinase-9, contributes to tumor-induced osteolysis. Cancer Res 2009;69:6747-55. doi:10.1158/0008-5472.CAN-08-3949.   DOI
38 Lynch CC, Hikosaka A, Acuff HB, Martin MD, Kawai N, Singh RK, Vargo-Gogola TC, Begtrup JL, Peterson TE, Fingleton B, Shirai T, Matrisian LM, Futakuchi M. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 2005;7:485-96. doi: 10.1016/j.ccr.2005.04.013.   DOI
39 Gocheva V, Joyce JA. Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 2007;6:60-4. doi:10.4161/cc.6.1.3669.   DOI
40 Quan J, Johnson NW, Zhou G, Parsons PG, Boyle GM, Gao J. Potential molecular targets for inhibiting bone invasion by oral squamous cell carcinoma: a review of mechanisms. Cancer Metastasis Rev 2012;31:209-19. doi: 10.1007/s10555-011-9335-7.   DOI
41 Olson OC, Joyce JA. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer 2015;15:712-29. doi: 10.1038/nrc4027.   DOI
42 Goto T, Yamaza T, Tanaka T. Cathepsins in the osteoclast. J Electron Microsc (Tokyo) 2003;52:551-8. doi: 10.1093/jmicro/52.6.551.   DOI
43 Martin CK, Dirksen WP, Shu ST, Werbeck JL, Thudi NK, Yamaguchi M, Wolfe TD, Heller KN, Rosol TJ. Characterization of bone resorption in novel in vitro and in vivo models of oral squamous cell carcinoma. Oral Oncol 2012;48:491-9. doi:10.1016/j.oraloncology.2011.12.012.   DOI
44 Kawamata H, Nakashiro K, Uchida D, Harada K, Yoshida H, Sato M. Possible contribution of active MMP2 to lymphnode metastasis and secreted cathepsin L to bone invasion of newly established human oral-squamous-cancer cell lines. Int J Cancer 1997;70:120-7. doi: 10.1002/(SICI)1097-0215(19970106)70:1<120::AID-IJC18>3.0.CO;2-P.   DOI
45 Kawasaki G, Kato Y, Mizuno A. Cathepsin expression in oral squamous cell carcinoma: relationship with clinicopathologic factors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;93:446-54. doi: 10.1067/moe.2002.122834.   DOI
46 Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423:337-42. doi: 10.1038/nature01658.   DOI
47 Takayama Y, Mori T, Nomura T, Shibahara T, Sakamoto M. Parathyroid-related protein plays a critical role in bone invasion by oral squamous cell carcinoma. Int J Oncol 2010;36:1387-94. doi: 10.3892/ijo_00000623.
48 Dougall WC, Chaisson M. The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev 2006;25:541-9. doi: 10.1007/s10555-006-9021-3.   DOI
49 Cochran DL. Inflammation and bone loss in periodontal disease. J Periodontol 2008;79(8 Suppl):1569-76. doi: 10.1902/jop.2008.080233.   DOI
50 Jimi E, Kokabu S, Matsubara T, Nakatomi C, Matsuo K, Watanabe S. NF-${\kappa}B$ acts as a multifunctional modulator in bone invasion by oral squamous cell carcinoma. Oral Sci Int 2016;13:1-6. doi: 10.1016/S1348-8643(15)00038-5.   DOI