Browse > Article
http://dx.doi.org/10.13160/ricns.2021.14.3.139

A Classification of the Torsion-free Extensions  

Yoo, Won-Sok (Department of Applied Mathematics, Kumoh National Institute of Technology)
Publication Information
Journal of Integrative Natural Science / v.14, no.3, 2021 , pp. 139-146 More about this Journal
Abstract
The purpose of this paper is to classify the torsion-free extensions 1→ℤ3→𝛱→ℤ𝜱→1 with injective abstract kernel 𝜙 : ℤ𝜱→Aut(ℤ3). From this classification, we handle the sufficient conditions so as to classify the crystallographic groups of Sol4m,n.
Keywords
Torsion-free extensions; Crystallographic group; Bieberbach group; $Sol^4_{m,n}$; $A_{m,n}$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. A. Hillman, Four-manifolds, Geometries and Knots, Geometry & Topology Monographs, 5, Geometry & Topology Publications, Coventry, 2002.
2 P. Scott, "The geometries of 3-manifolds", Bull. London Math. Soc., vol. 15, p. 401-487, 1983.   DOI
3 W. P. Thurston, Three-dimensional Geometry and Topology, vol. 1, Princeton University Press, Princeton, NJ, 1997.
4 K. Y. Ha and J. B. Lee, "Crystallographic groups of Sol", Math. Nachr., vol. 286, p. 1614-1667, 2013.   DOI
5 K. B. Lee and S. Thuong, "Infra-solvmanifolds of Sol41", J. Korean Math. Soc., vol. 52, p. 1209-1251, 2015.   DOI
6 S. V. Thuong, "Classification of closed manifolds with -geometry", Geometriae Dedicata, vol. 199, p. 373-397, 2019.   DOI
7 W. S. Yoo, "On the crystallographic group of Sol4m,n", J. Chungcheong Math. Soc., vol. 34, No. 1, p. 17-26, 2021.   DOI