1 |
Chhikara, R. S. and Folks, J. L. (1989). The Inverse Gaussian Distribution: Theory, Methodology, and Applications, Marcel Dekker, New York.
|
2 |
Edgeman, R. L. (1990). Assessing the inverse Gaussian distribution assumption, IEEE Transactions on Reliability, 39, 352-355.
DOI
ScienceOn
|
3 |
Edgeman, R. L., Scott, R. C. and Pavur, R. J. (1988). A modified Kolmogorov-Smirnov test for the inverse density with unknown parameters, Communications in Statistics-Simulation and Computation, 17, 1203-1212.
DOI
ScienceOn
|
4 |
Ehsan, S., Ebrahimi, N. and Habibullah, M. (1995). Information distinguishability with application to analysis of failure data, Journal of the American Statistical Association, 90, 657-668.
DOI
ScienceOn
|
5 |
Gokhale, D. V. (1983). On entropy-based goodness-of-fit tests, Computational Statistics and Data Analysis, 1, 157-165.
DOI
ScienceOn
|
6 |
Jaynes, E. T. (1957). Information theory and statistical mechanics, Physicasl Review, 106, 620-630.
DOI
|
7 |
Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data, John Wiley, New York.
|
8 |
Mudholkar, G. S. and Tian, L. (2002). An entropy characterization of the inverse Gaussian distribution and related goodness-of-fit test, Journal of Statistical Planning and Inference, 102, 211-221.
DOI
ScienceOn
|
9 |
Schr¨odinger, E. (1915). Zur theorie der fall und steigversuche an teilchen mit Brownscher bewegung, Physikalische Zeitschrift, 16, 289-295.
|
10 |
Seshadri, V. (1999). The Inverse Gaussian Distribution: Statistical Theory and Applications, Springer, New York.
|
11 |
Shannon, C. E. (1948). A mathematical theory of communications, Bell System Technical Journal, 27, 379-423, 623-656.
DOI
|
12 |
Smoluchowsky, M. V. (1915). Notizuber die berechning der Brownschen molkularbewegung bei des ehrenhaft-milikanchen versuchsanordnung, Physikalische Zeitschrift, 16, 318-321.
|
13 |
Vasicek, O. (1976). A test for normality based on sample entropy, Journal of the Royal Statistical Society, Series B, 38, 54-59.
|
14 |
Tweedie, M. K. (1957a). Statistical properties of inverse Gaussian distributions-I, Annals of Mathematical Statistics, 28, 362-377.
DOI
ScienceOn
|
15 |
Tweedie, M. K. (1957b). Statistical properties of inverse Gaussian distributions-II, Annals of Mathematical Statistics, 28, 696-705.
DOI
ScienceOn
|