Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.6.348

Degradation Characteristics of Pr/Co/Cr/Er Co-doped Zinc Oxide Varistors by Impulse Current Stress  

Nahm, Choon-Woo (Department of Electrical Engineering, Semiconductor Ceramics Laboratory, Dongeui University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.6, 2014 , pp. 348-352 More about this Journal
Abstract
In light of the sure protection function, the most important factors of a varistor are the clamping voltage ratio and degradation characteristics. The degradation characteristics of Pr/Co/Cr/Er co-doped zinc oxide varistors were investigated by impulse currents (0.4~2.1 kA) stress for the specified content of $Er_2O_3$ (0.5 and 2.0 mol%). The varistor doped with 2.0 mol% $Er_2O_3$ exhibited the best clamp characteristics, with the clamp voltage ratio (K) in the range of K = 1.63~1.88 at the impulse currents of 5-50 A. However, the varistor doped with 0.5 mol% exhibited excellent electrical stability, with variation rates for the breakdown field, for the nonlinear coefficient, and for the leakage current density of -6.9%, -12.6%, and -14.3%, respectively, after application of an impulse current of 2.1 kA. In contrast, the varistor doped with 2.0 mol% was destroyed after application of an impulse current of 1.2 kA.
Keywords
Impulse current; Clamp voltage ratio; Degradation characteristics; Varistor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1990.tb05232.x].   DOI
2 L. M. Levinson and H. R. Philipp, J. Appl. Phys., 46, 1332 (1975). [DOI: http://dx.doi.org/10.1063/1.321701].   DOI   ScienceOn
3 C. W. Nahm, J. Eur. Ceram. Soc., 21, 545 (2001). [DOI: http://dx.doi.org/10.1016/S0955-2219(00)00233-8].   DOI   ScienceOn
4 L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65, 639 (1986).
5 A. B. Alles and V. L. Burdick, J. Appl. Phys., 70, 6883 (1991). [DOI: http://dx.doi.org/10.1063/1.349812].   DOI
6 A. B. Alles, R. Puskas, G. Callahan, and V. L. Burdick, J. Am. Ceram. Soc., 76, 2098 (1993). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1993.tb08339.x].   DOI   ScienceOn
7 Y. S. Lee, K. S. Liao, and T. Y. Tseng, J. Am. Ceram. Soc., 79, 2379 (1996). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1996.tb08986.x].   DOI   ScienceOn
8 C. W. Nahm and B. C. Shin, J. Mater. Sci.: Mater. Electron., 16, 725 (2005). [DOI: http://dx.doi.org/10.1007/s10854-005-4975-4].   DOI   ScienceOn
9 C. W. Nahm and J. S. Ryu, Mater. Lett., 53, 110 (2002). [DOI: http://dx.doi.org/10.1016/S0167-577X(01)00464-5].   DOI
10 C. W. Nahm, B. C. Shin, and B. H. Min, Mater. Chem. Phys., 82, 157 (2003). [DOI: http://dx.doi.org/10.1016/S0254-0584(03)00213-X].   DOI   ScienceOn
11 C. W. Nahm, J. Europ. Ceram Soc., 23, 1345 (2003). [DOI: http://dx.doi.org/10.1016/S0955-2219(02)00285-6].   DOI
12 J. Cai, Y. H. Lin, M. Li, and C. W. Nan, J. Am. Ceram. Soc., 90, 291 (2007). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2006.01338.x].   DOI
13 C. W. Nahm, J. Mater. Sci.: Mater. Electron., 20, 418 (2009). [DOI: http://dx.doi.org/10.1007/s10854-008-9745-7].   DOI
14 H. Heng, X. Fu, Z. Fu, C. Wang, L. Qi, and H. Miao, J. Alloy. Compd., 497, 304 (2010). [DOI: http://dx.doi.org/10.1016/j.jallcom.2010.03.047].   DOI
15 Z. Peng, X. Fu, Y. Zang, Z. Fu, C. Wang, L. Qi, and H. Miao, J. Alloy. Compd., 508, 494 (2010). [DOI: http://dx.doi.org/10.1016/j.jallcom.2010.08.100].   DOI
16 H. Feng, Z. Peng, X. Fu, Z. Fu, C. Wang, L. Qi, and H. Miao, J. Alloy. Compd., 509, 7175 (2011). [DOI: http://dx.doi.org/10.1016/j.jallcom.2011.04.042].   DOI
17 C. W. Nahm, Ceram. Int., 36, 1495 (2010). [DOI: http://dx.doi.org/10.1016/j.ceramint.2010.02.027].   DOI
18 C. W. Nahm, Mater. Sci. Eng. B, 170, 123 (2010). [DOI: http://dx.doi.org/10.1016/j.mseb.2010.03.036].   DOI
19 J. C. Wurst and J.A. Nelson, J. Am. Ceram. Soc., 55, 109 (1972). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1972.tb11224.x].   DOI