Browse > Article
http://dx.doi.org/10.3938/jkps.73.1329

Mobility Enhancement in Polycrystalline Silicon Thin Film Transistors due to the Dehydrogenation Mechanism  

Lee, Seok Ryoul (LG Display Co., Ltd.)
Sung, Sang-Yun (LG Display Co., Ltd.)
Lee, Kyong Taik (LG Display Co., Ltd.)
Cho, Seong Gook (LG Display Co., Ltd.)
Lee, Ho Seong (School of Materials Science and Engineering, Kyungpook National University)
Abstract
We investigated the mechanism of mobility enhancement after the dehydrogenation process in polycrystalline silicon (poly-Si) thin films. The dehydrogenation process was performed by using an in-situ CVD chamber in a $N_2$ ambient or an ex-situ furnace in air ambient. We observed that the dehydrogenated poly-Si in a $N_2$ ambient had a lower oxygen concentration than the dehydrogenated poly-Si annealed in an air ambient. The in-situ dehydrogenation increased the (111) preferred orientation of poly-Si and reduced the oxygen concentration in poly-Si thin films, leading to a reduction of the trap density near the valence band. This phenomenon gave rise to an increase of the field-effect mobility of the poly-Si thin film transistor.
Keywords
Thin film transistor; Low-temperature poly silicon; Crystallization; Dehydrogenation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Tsujimura, W. Zhu, S. Mizukoshi, N. Mori, K. Miwa, S. One, Y. Maekawa, K. Kawabe and M. Kohno, SID 38, 84 (2007).   DOI
2 A. Nathan, G. R. Chaji and S. J. Ashtiani, J. Dis. Technol. 1, 267 (2005).   DOI
3 C. L. Lin, IEEE Electron Dev. Lett. 28, 129 (2007).   DOI
4 J. H. Lee, W. J. Nam, B. K. Kim, H. S, Choi, Y. M. Ha and M. M. Han, IEEE Electron Dev. Lett. 27, 830 (2006).   DOI
5 J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao and H. H. Lee, SID 12, 367 (2004).
6 S. K. Hong, B. K. Kim and Y. M. Ha, SID 38, 1366 (2007).   DOI
7 S. H. Jung, H. K. Lee, C. Y. Kim, S. Y. Yoon, C. D. Kim and I. B. Kang, SID 39, 101 (2008).   DOI
8 M. K. Hatalis and D. W. Greeve, J. Appl. Phys. 63, 2260 (1988).   DOI
9 M. W. Ma, T. Y, Chiang, T. S. Chao and T. F. Lei, Semicond. Sci. Technol. 24, 072001 (2009).   DOI
10 S-W. Lee and S-K. Joo, IEEE Electron Dev. Lett. 17, 4, (1996).   DOI
11 M. A. Crowder, P. G. Carey, P. M. Smith, R. S. Sposili, H. S. Cho and J. S. Im, IEEE Electron Dev. Lett. 19, 8 (1998).
12 A. T. Voutsas, A. M. Marmorstein and R. Solanki, J. Electrochem. Soc. 146, 3500 (1999).   DOI
13 M. Yazakis, S. Takenaka and H. Ohshima, Jpn. J. Appl. Phys. 31, 206 (1992).   DOI
14 K. C. Moon, J-H. Lee and M-K. Han, IEEE Trans. Electrons Dev. 52, 512 (2005).   DOI
15 C. Chen, K. Abe, H. Kumoni and J. Kanicki, IEEE Trans. Electrons Dev. 56, 1177 (2009).   DOI
16 R. Martel, Ph. Avouris and I-W. Lyo, Science 272, 385 (1996).   DOI
17 A. Feltz, U. Memmert and R. J. Behm, Chem. Phys. Lett. 192, 271 (1992).   DOI
18 B. Mereu, C. Rossel, E. P. Gusev and M. Yang, J. Appl. Phys. 100, 014504 (2006).   DOI
19 L. Chang, M. Ieong and M. Yang, IEEE Trans. Electron Dev. 51, 1621 (2004).   DOI