Browse > Article
http://dx.doi.org/10.5423/PPJ.FT.01.2017.0022

Purification and Characterization of a Major Extracellular Chitinase from a Biocontrol Bacterium, Paenibacillus elgii HOA73  

Kim, Yong Hwan (College of Life and Resource Science, Dankook University)
Park, Seur Kee (Department of Plant Medicine, Suncheon National University)
Hur, Jin Young (Department of Plant Medicine, Suncheon National University)
Kim, Young Cheol (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Publication Information
The Plant Pathology Journal / v.33, no.3, 2017 , pp. 318-328 More about this Journal
Abstract
Chitinase-producing Paenibacillus elgii strain HOA73 has been used to control plant diseases. However, the antimicrobial activity of its extracellular chitinase has not been fully elucidated. The major extracellular chitinase gene (PeChi68) from strain HOA73 was cloned and expressed in Escherichia coli in this study. This gene had an open reading frame of 2,028 bp, encoding a protein of 675 amino acid residues containing a secretion signal peptide, a chitin-binding domain, two fibronectin type III domains, and a catalytic hydrolase domain. The chitinase (PeChi68) purified from recombinant E. coli exhibited a molecular mass of approximately 68 kDa on SDS-PAGE. Biochemical analysis indicated that optimum temperature for the actitvity of purified chitinase was $50^{\circ}C$. However, it was inactivated with time when it was incubated at $40^{\circ}C$ and $50^{\circ}C$. Its optimum activity was found at pH 7, although its activity was stable when incubated between pH 3 and pH 11. Heavy metals inhibited this chitinase. This purified chitinase completely inhibited spore germination of two Cladosporium isolates and partially inhibited germination of Botrytis cinerea spores. However, it had no effect on the spores of a Colletotricum isolate. These results indicate that the extracellular chitinase produced by P. elgii HOA73 might have function in limiting spore germination of certain fungal pathogens.
Keywords
antifungal activity; Botrytis cinerea; extracellular chitinase; heterologous expression; Paenibacillus elgii;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Banani, H., Spadaro, D., Zhang, D., Matic, S., Garibaldi, A. and Gullino, M. L. 2015. Postharvest application of a novel chitinase cloned from Metschnikowia fructicola and overexpressed in Pichia pastoris to control brown rot of peaches. Int. J. Food Microbiol. 199:54-61.   DOI
2 Broadway, R. M., Williams, D. L., Kain, W. C., Harman, G. E., Lorito, M. and Labeda, D. P. 1995. Partial characterization of chitinolytic enzymes from Streptomyces albidoflavus. Lett. Appl. Microbiol. 20:271-276.   DOI
3 Brurberg, M. B., Nes, I. F. and Eijsink, V. G. 1996. Comparative studies of chitinases A and B from Serratia marcescens. Microbiology 142:1581-1589.   DOI
4 Brzezinska, M. S., Jankiewicz, U., Burkowska, A. and Walczak, M. 2014. Chitinolytic microorganisms and their possible application in environmental protection. Curr. Microbiol. 68:71-81.   DOI
5 Chang, W. T., Chen, C. S. and Wang, S. L. 2003. An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as a carbon source. Curr. Microbiol. 47:102-108.   DOI
6 Chet, I., Ordentlich, A., Shapira, R. and Oppenheim, A. 1990. Mechanisms of biocontrol of soil-borne plant pathogens by Rhizobacteria. Plant Soil 129:85-92.   DOI
7 Dahiya, N., Tewari, R. and Hoondal, G. S. 2006. Biotechnological aspects of chitinolytic enzymes: a review. Appl. Microbiol. Biotechnol. 71:773-782.   DOI
8 Das, S. N., Dutta, S., Kondreddy, A., Chilukoti, N., Pullabhotla, S. V. S. R. N., Vadlamudi, S. and Podile, A. R. 2010. Plant growth-promoting chitinolytic Paenibacillus elgii responds positively to tobacco root exudates. J. Plant Growth Regul. 29:409-418.   DOI
9 Di Maro, A., Terracciano, I., Sticco, L., Fiandra, L., Ruocco, M., Corrado, G., Parente, A. and Rao, R. 2010. Purification and characterization of a viral chitinase active against plant pathogens and herbivores from transgenic tobacco. J. Biotechnol. 147:1-6.   DOI
10 Sang, M. K., Kim, E. N., Han, G. D., Kwack, M. S., Jeun, Y. C. and Kim, K. D. 2014. Priming-mediated systemic resistance in cucumber induced by Pseudomonas azotoformans GCB19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare. Phytopathology 104:834-842.   DOI
11 Suzuki, K., Sugawara, N., Suzuki, M., Uchiyama, T., Katouno, F., Nikaidou, N. and Watanabe, T. 2002. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci. Biotechnol. Biochem. 66:1075-1083.   DOI
12 Teng, Y., Zhao, W., Qian, C., Li, O., Zhu, L. and Wu, X. 2012. Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by Paenibacillus elgii B69. BMC Microbiol. 12:45.   DOI
13 Yan, Q. and Fong, S. S. 2015. Bacterial chitinase: nature and perspectives for sustainable bioproduction. Bioresour. Bioprocess. 2:31.   DOI
14 Watanabe, T., Ito, Y., Yamada, T., Hashimoto, M., Sekine, S. and Tanaka, H. 1994. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol. 176:4465-4472.   DOI
15 Watanabe, T., Oyanagi, W., Suzuki, K. and Tanaka, H. 1990. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol. 172:4017-4022.   DOI
16 Wen, Y., Wu, X., Teng, Y., Qian, C., Zhan, Z., Zhao, Y. and Li, O. 2011. Identification and analysis of the gene cluster involved in biosynthesis of paenibactin, a catecholate siderophore produced by Paenibacillus elgii B69. Environ. Microbiol. 13:2726-2737.   DOI
17 Yu, G., Xie, L. Q., Li, J. T., Sun, X. H., Zhang, H., Du, Q., Li, Q. Y., Zhang, S. H. and Pan, H. Y. 2015. Isolation, partial characterization, and cloning of an extracellular chitinase from the entomopathogenic fungus Verticillium lecanii. Genet. Mol. Res. 14:2275-2289.   DOI
18 Frankowski, J., Lorito, M., Scala, F., Schmid, R., Berg, G. and Bahl, H. 2001. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch. Microbiol. 176:421-426.   DOI
19 Ding, R., Li, Y., Qian, C. and Wu, X. 2011. Draft genome sequence of Paenibacillus elgii B69, a strain with broad antimicrobial activity. J. Bacteriol. 193:4537.   DOI
20 Flach, J., Pilet, P. E. and Jolles, P. 1992. What's new in chitinase research? Experientia 48:701-716.   DOI
21 Harman, G. E., Hayes, C. K., Lorito, M., Broadway, R. M., Di Poetro, A., Peterbauer, C. and Tronsmo, A. 1993. Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83:313-318.   DOI
22 Hashimoto, M., Ikegami, T., Seino, S., Ohuchi, N., Fukada, H., Sugiyama, J., Shirakawa, M. and Watanabe, T. 2000. Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. J. Bacteriol. 182:3045-3054.   DOI
23 Hegedus, D., Erlandson, M., Gillott, C. and Toprak, U. 2009. New insights into peritrophic matrix synthesis, architecture, and function. Annu. Rev. Entomol. 54:285-302.   DOI
24 Horn, S. J., Sorbotten, A., Synstad, B., Sikorski, P., Sorlie, M., Varum, K. M. and Eijsink, V. G. 2006. Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J. 273:491-503.   DOI
25 Itoh, T., Hibi, T., Fujii, Y., Sugimoto, I., Fujiwara, A., Suzuki, F., Iwasaki, Y., Kim, J. K., Taketo, A. and Kimoto, H. 2013. Cooperative degradation of chitin by extracellular and cell surface-expressed chitinases from Paenibacillus sp. strain FPU-7. Appl. Environ. Microbiol. 79:7482-7490.   DOI
26 Kamensky, M., Ovadis, M., Chet, I. and Chermin, L. 2003. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol. Biochem. 35:323-331.   DOI
27 Kim, Y. S., Balaraju, K. and Jeon, Y. 2016. Biological control of apple anthracnose by Paenibacillus polymyxa APEC128, an antagonistic rhizobacterium. Plant Pathol. J. 32:251-259.   DOI
28 Kim, Y. C., Jung, H., Kim, K. Y. and Park, S. K. 2008. An effective biocontrol bioformulations against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur. J. Plant Pathol. 120:373-382.   DOI
29 Kim, Y. C., Lee, J. H., Bae, Y. S., Sohn, B. K. and Park, S. K. 2010. Development of effective environmentally-friendly apporaches to control Alternaria blight and anthracnose diseases of Korean ginseng. Eur. J. Plant Pathol. 127:443-450.   DOI
30 Kim, Y. C., Leveau, J., McSpadden Gardener, B. B., Pierson, E. A., Pierson, L. S., 3rd. and Ryu, C. M. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77:1548-1555.   DOI
31 Kumar, S. N., Jacob, J., Reshma, U. R., Rajesh, R. O. and Kumar, B. S. 2015. Molecular characterization of forest soil based Paenibacillus elgii and optimization of various culture conditions for its improved antimicrobial activity. Front. Microbiol. 6:1167.   DOI
32 Lee, K. Y., Heo, K. R., Choi, K. H., Kong, H. G., Nam, J. S., Yi, Y. B., Park, S. H., Lee, S. W. and Moon, B. J. 2009. Characterization of a chitinase gene exhibiting antifungal activity from a biocontrol bacterium Bacillus licheniformis N1. Plant Pathol. J. 25:344-351.   DOI
33 Park, S. K., Lee, M. C. and Harman, G. E. 2005. The biocontrol activity of Chromobacterium sp. strain C61 against Rhizoctonia solani depends on the productive ability of chitinase. Plant Pathol. J. 21:275-282.   DOI
34 Lorito, M., Hayes, C. K., Di Pietro, A., Woo, S. L. and Harman, G. E. 1994. Purification, characterization, and synergistic activity of a glucan 1,3-${\beta}$-glucosidase and an N-acetyl-${\beta}$-glucosaminidase from Trichoderma harzianum. Phytopathology 84:398-405.   DOI
35 Akagi, K., Watanabe, J., Hara, M., Kezuka, Y., Chikaishi, E., Yamaguchi, T., Akutsu, H., Nonaka, T., Watanabe, T. and Ikegami, T. 2006. Identification of the substrate interaction region of the chitin-binding domain of Streptomyces griseus chitinase C. J. Biochem. 139:483-493.   DOI
36 Arora, N. K., Kim, M. J., Kang, S. C. and Maheshwari, D. K. 2007. Role of chitinase and beta-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can. J. Microbiol. 53:207-212.   DOI
37 Neung, S., Nguyen, X. H., Naing, K. W., Lee, Y. S. and Kim, K. Y. 2014. Insecticidal potential of Paenibacillus elgii HOA73 and its combination with organic sulfur pesticide on diamondback moth, Plutella xylostella. J. Korean Soc. Appl. Biol. Chem. 57:181-186.   DOI
38 Nguyen, X. H., Naing, K. W., Lee, Y. S., Jung, W. J., Anees, M. and Kim, K. Y. 2013. Antagonistic potential of Paenibacillus elgii HOA73 against the root-knot nematode, Meloidogyne incognita. Nematology 15:991-1000.   DOI
39 Nguyen, X. H., Naing, K. W., Lee, Y. S., Moon, J. H., Lee, J. H. and Kim, K. Y. 2015. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. J. Basic Microbiol. 55:625-634.   DOI
40 Park, S. K., Kim, C. W., Kim, H., Jung, J. S. and Harman, G. E. 2007. Cloning and high-level production of a chitinase from Chromobacterium sp. and the role of conserved or nonconserved residues on its catalytic activity. Appl. Microbiol. Biotechnol. 74:791-804.   DOI
41 Reyes-Ramirez, A., Escudero-Abaraca, B. I., Aguilar-Uscanga, G., Hayward-Jones, P. M. and Barboza-Corona, J. E. 2004. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci. 69:M131-M134.
42 Qian, C. D., Liu, T. Z., Zhou, S. L., Ding, R., Zhao, W. P., Li, O. and Wu, X. C. 2012. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii. BMC Microbiol. 12:197.   DOI