Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.10.2011.0192

Genetic Differentiation of Pseudomonas syringae Pathovar tomato from Other P. syringae Pathovars using REP-PCR and URP-PCR  

Cho, Min-Seok (National Academy of Agricultural Science, Rural Development Administration)
Park, Dong-Suk (National Academy of Agricultural Science, Rural Development Administration)
Yun, Yeo-Hong (Department of Microbiology and Institute of Basic Sciences, Dankook University)
Kim, Seong-Hwan (Department of Microbiology and Institute of Basic Sciences, Dankook University)
Shim, Myung-Yong (Institute of Ecological Phytochemistry, Hankyong National University)
Choi, Chang-Won (Department of Biology and Medicinal Science, Paichai University)
Kim, Young-Shick (Department of Plant Science and Technology, Sangmyung University)
Publication Information
The Plant Pathology Journal / v.28, no.1, 2012 , pp. 60-67 More about this Journal
Abstract
For the genetic differentiation of $Pseudomonas$ $syringae$ pathovar $tomato$, a total of 51 $P.$ $syringae$ pv. strains infecting 33 different host plants were analyzed using repetitive element PCR(REP-PCR) and universal rice primer PCR(URP-PCR). The entire DNA fingerprint profiles were analyzed using unweighted pair-group method with arithmetic averages (UPGMA). The 51 $P.$ $syringae$ pv. strains could be divided into five clusters based on 65% similarity by Rep-PCR using BOX, ERIC, and REP primers. $P.$ $syringae$ pv. $tomato$ cluster was well separated from other 31 $P.$ $syringae$ pathovars. $P.$ $syringae$ pv. $tomato$ cluster included only $P.$ $syringae$ pv. $maculicola$ and $P.$ $syringae$ pv. $tomato$. $P.$ $syringae$ pv. $tomato$ strains could be divided into two genetic groups. Meanwhile, the Pseudomonas pv. strains could be divided into four clusters based on 63% similarity by URP-PCR using 2F, 9F, and 17R primers. $P.$ $syringae$ pv. $tomato$ cluster was also well separated from 30 other $P.$ $syringae$ pathovars. In this case, $P.$ $syringae$ pv. $tomato$ cluster included $P.$ $syringae$ pv. $maculicola$, $P.$ $syringae$ pv. $berberidi$, and $P.$ $syringae$ pv. $tomato$. $P.$ $syringae$ pv. $tomato$ strains was also separated into two genetic groups by URP-PCR analysis. Overall, our work revealed that $P.$ $syringae$ pv. $tomato$ can be genetically differentiated from other $P.$ $syringae$ pathovars by the DNA fingerprint profiles of REP-PCR and URP-PCR. We first report that there are two genetically diverged groups in $P.$ $syringae$ pv. $tomato$ strains.
Keywords
Genetic differentiation; Pseudomonas syringae pathovar tomato; REP-PCR; URP-PCR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wiebe, W. L. and Campbell, R. N. 1993. Characterization of Pseudomonas syringae pv. maculicola and comparison with P. s. pv. tomato. Plant Dis. 77:414-419.   DOI   ScienceOn
2 Weingart, H. and Volksch, B. 1997. Genetic fingerprinting of Pseudomonas syringae pathovar using ERIC-, REP-, and IS50-PCR. J. Phytopathol. 145:339-345.   DOI   ScienceOn
3 Zhao, Y., Damicone, J. P., Demezas, D. H., Rangaswamy, V. and Bender, C. L. 2000. Bacterial leaf spot on leafy crucifers in Oklahoma caused by Pseudomonas syringae pv. maculicola. Plant Dis. 84:1015-1020.   DOI   ScienceOn
4 Takikawa, Y., Nishiyama, N., Ohba, K., Tsuyuma, S. and Goto, M. 1994. Synonymy of Pseudomonas syringae pv. maculicola and Pseudomonas syringae pv. tomato. 199-204. In M. Lemattre, S. Freigoun, K. Rudolph, and J. G. Swings (ed.), Plant pathogenic bacteria, 8th International Conference, Versailles (France), 9 to 12 June 1992. INRA, ORSTOM, Paris.
5 Peters, B. J., Ash, G. J., Cother, E. J., Hailstones, D. L., Noble, D. H. and Urwin, N. A. R. 2004. Pseudomonas syringae pv. maculicola in Australia: pathogenic, phenotypic and genetic diversity. Plant Pathol. 53:73-79.   DOI   ScienceOn
6 Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3th ed. APS PRESS.
7 Schneider, R. W. and Grogan, R. G., 1977. Bacterial speck of tomato: sources of inoculum and establishment of a resident population. Phytopathology 67:388-394.
8 Scortichini, M., Marchesi, U., Dettori, M. T. and Rossi, M. P. 2003. Genetic diversity, presence of the syrB gene, host preference and virulence of Pseudomonas syringae pv. syringae strains from woody and herbaceous host plants. Plant Pathol. 52:277-286.   DOI   ScienceOn
9 Skerman, V. B. D., McGowan, V. and Sneath, P. H. A. (editors) 1989. Approved Lists of Bacterial Names. American Society for Microbiology. Washington, DC.
10 Palleroni, N. J. 1984. Genus I. Pseudomonas Migula 1894, 237. 141-199. N. R. Krieg and J. G. Holt (ed.) Bergey's manual of systematic bacteriology, vol. 1. Williams & Wilkins. Baltimore.
11 Pitcher, D. G., Saunders, N. A. and Owen, R. J. 1989. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol. 8:151-158.   DOI
12 Rohlf, F. J. 1998. NTSYSpc: Numerical Taxonomy and Multivariate Analysis System version 2.02. Exeter Software, Setauket, NY.
13 Manceau, C. and Horvais, A. 1997. Assessment of genetic diversity among strains of Pseudomonas syringae by PCR-restriction fragment length polymorphism analysis of rRNA operons with special emphasis on P. syringae pv. tomato. Appl. Environ. Microbiol. 63:498-505.
14 Martin, B., Humbert, O., Camara, M., Guenzi, E., Walker, J., Mitchell, T., Andrew, P., Prudhomme, M., Alloing, G. and Hakenbeck, R. 1992. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res. 20:3479-3483.   DOI   ScienceOn
15 Murray, E. G. D. 2001. (Garrity, G. M) Bergey's Manual of Systemic Bacteriology, 8th, Springer.
16 Kang, H. W., Park, D. S., Go, S. J. and Eun, M. Y. 2002. Fingerprinting of diverse genomes using PCR with universal rice primers generated from repetitive sequence of Korean weedy rice. Mol. Cells 13:281-287.
17 Louws, F. J., Fulbright, D. W., Stephens, C. T. and de Bruijn, F. J. 1994. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl. Environ. Microbiol. 60:2286-2295.
18 Louws, F. J., Rademaker, J. L. W. and de Bruijin, F. J. 1999. The three Ds of PCR-based genomic analysis of phytobacteria: diversity, detection, and disease diagnosis. Annu. Rev. Phytopathol. 37:81-125.   DOI   ScienceOn
19 Hendson, M., Hildebrand, D. C. and Schroth, M. N. 1992. Relatedness of Pseudomonas syringae pv. tomato, Pseudomonas syringae pv. maculicola, and Pseudomonas syringae pv. antirrhini. J. Appl. Bacteriol. 73:455-464.   DOI
20 Gardan, L., Shafik, H. L., Belouin, S., Broch, R., Grimont, F. and Grimont, P. A. D. 1999. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas cannabina, sp. nov. (ex Sutic and Dowson 1959). Int. J. Syst. Bacteriol. 49:469-478.   DOI
21 Jana, T. K., Singh, N. K., Koundal, K. R. and Sharma, T. R. 2005. Genetic differentiation of charcoal rot pathogen, Macrophomina phaseolina, into specific groups using URP-PCR. Can. J. Microbiol. 51:159-164.   DOI   ScienceOn
22 Dye, D. W., Bradbury, J. F., Goto, M., Hayward, A. C., Lelliott, R. A. and Schroth, M. N. 1980. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev. Plant Pathol. 59:153-168.
23 Cuppels, D. A. and Ainsworth, T. 1995. Molecular and physiological characterization of Pseudomonas syringae pv. tomato and Pseudomonas syringae pv. maculicola strains that produce the phytotoxin coronatine. Appl. Environ. Microbiol. 61:3530-3536.
24 Dice, L. R. 1945. Measures of the amount of ecologic association between species. Ecology 26:297-302.   DOI   ScienceOn