1 |
Osmak M (2012) Statins and cancer: Current and future prospects. Cancer Lett 324, 1-12
DOI
|
2 |
Altwairgi AK (2015) Statins are potential anticancerous agents (Review). Oncol Rep 33, 1019-1039
DOI
|
3 |
Gordon JA, Midha A, Szeitz A et al (2016) Oral simvastatin administration delays castration-resistant progression and reduces intratumoral steroidogenesis of LNCaP prostate cancer xenografts. Prostate Cancer Prostatic Dis 19, 21-27
DOI
|
4 |
Yu O, Eberg M, Benayoun S et al (2014) Use of statins and the risk of death in patients with prostate cancer. J Clin Oncol 32, 5-11
|
5 |
Bogoyevitch MA and Arthur PG (2008) Inhibitors of c-Jun N-terminal kinases: JuNK no more? Biochim Biophys Acta 1784, 76-93
DOI
|
6 |
Koyuturk M, Ersoz M and Altiok N (2004) Simvastatin induces proliferation inhibition and apoptosis in C6 glioma cells via c-jun N-terminal kinase. Neurosci Lett 370, 212-217
DOI
|
7 |
Chen YJ and Chang LS (2014) Simvastatin induces /p65 down-regulation and JNK1/c-Jun/ATF-2 activation, leading to matrix metalloproteinase-9 (MMP-9) but not MMP-2 down-regulation in human leukemia cells. Biochem Pharmacol 92, 530-543
DOI
|
8 |
Koyuturk M, Ersoz M and Altiok N (2007) Simvastatin induces apoptosis in human breast cancer cells: p53 and estrogen receptor independent pathway requiring signalling through JNK. Cancer Lett 250, 220-228
DOI
|
9 |
Krycer JR and Brown AJ (2013) Cholesterol accumulation in prostate cancer: A classic observation from a modern perspective. Biochim Biophys Acta 1835, 219-229
|
10 |
Katsogiannou M, Ziouziou H, Karaki S, Andrieu C, Henry de Villeneuve M and Rocchi P (2015) The hallmarks of castration-resistant prostate cancers. Cancer Treat Rev 41, 588-597
DOI
|
11 |
Gopalan A, Yu W, Sanders BG and Kline K (2013) Simvastatin inhibition of mevalonate pathway induces apoptosis in human breast cancer cells via activation of JNK/CHOP/DR5 signaling pathway. Cancer Lett 329, 9-16
DOI
|
12 |
Zhang S, Doudican NA, Quay E and Orlow SJ (2011) Fluvastatin enhances sorafenib cytotoxicity in melanoma cells via modulation of AKT and JNK signaling pathways. Anticancer Res 31, 3259-3265
|
13 |
Goc A, Kochuparambil ST, Al-Husein B, Al-Azayzih A, Mohammad S and Somanath PR (2012) Simultaneous modulation of the intrinsic and extrinsic pathways by simvastatin in mediating prostate cancer cell apoptosis. BMC Cancer 12, e409
DOI
|
14 |
Chen X, Liu Y, Wu J et al (2016) Mechanistic study of inhibitory effects of atorvastatin and docetaxel in combination on prostate cancer. Cancer Genomics Proteomics 13, 151-160
|
15 |
Pienaar IS, Schallert T, Hattingh S and Daniels WM (2009) Behavioral and quantitative mitochondrial proteome analyses of the effects of simvastatin: implications for models of neural degeneration. J Neural Transm 116, 791-806
DOI
|
16 |
Campos-Martorell M, Salvador N, Monge M et al (2014) Brain proteomics identifies potential simvastatin targets in acute phase of stroke in a rat embolic model. J Neurochem 130, 301-312
DOI
|
17 |
Hirai T and Chida K (2003) Protein kinase (): activation mechanisms and cellular functions. J Biochem 133, 1-7
DOI
|
18 |
Ponce J, Brea D, Carrascal M et al (2010) The effect of simvastatin on the proteome of detergent-resistant membrane domains: Decreases of specific proteins previously related to cytoskeleton regulation, calcium homeostasis and cell fate. Proteomics 10, 1954-1965
DOI
|
19 |
Hwang R, Lee EJ, Kim MH et al (2004) Calcyclin, a ion-binding protein, contributes to the anabolic effects of simvastatin on bone. J Biol Chem 279, 21239-21247
DOI
|
20 |
Cho YE, Moon PG, Lee JE et al (2013) Integrative analysis of proteomic and transcriptomic data for identification of pathways related to simvastatin-induced hepatotoxicity. Proteomics 13, 1257-1275
DOI
|
21 |
Huang WC and Hung MC (2013) Beyond NF- activation: nuclear functions of kinase . J Biomed Sci 20, e3
DOI
|
22 |
Liu JJ and Zhang J (2013) Sequencing systemic therapies in metastatic castration-resistant prostate cancer. Cancer Control 20, 181-187
DOI
|
23 |
Xie F, Liu J, Li C and Zhao Y (2016) Simvastatin blocks TGF--induced epithelial-mesenchymal transition in human prostate cancer cells. Oncol Lett 11, 3377-3383
DOI
|
24 |
Jiang HL, Sun HF, Gao SP et al (2015) Loss of RAB1B promotes triple-negative breast cancer metastasis by activating TGF-/SMAD signaling. Oncotarget 6, 16352-16365
DOI
|
25 |
Vincent EE, Elder DJ, Phillips L et al (2011) Overexpression of the TXNDC5 protein in non-small cell lung carcinoma. Anticancer Res 31, 1577-1582
|
26 |
Clendening JW, Pandyra A, Boutros PC et al (2010) Dysregulation of the mevalonate pathway promotes transformation. Proc Natl Acad Sci U S A 107, 15051-15056
DOI
|
27 |
Wang L, Song G, Chang X et al (2015) The role of TXNDC5 in castration-resistant prostate cancer-involvement of androgen receptor signaling pathway. Oncogene 34, 4735-4745
DOI
|
28 |
Dixon KM, Lui GY, Kovacevic Z et al (2013) Dp44mT targets the AKT, TGF- and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. Br J Cancer 108, 409-419
DOI
|
29 |
Barboro P, Salvi S, Rubagotti A et al (2014) Prostate cancer: Prognostic significance of the association of heterogeneous nuclear ribonucleoprotein K and androgen receptor expression. Int J Oncol 44, 1589-1598
DOI
|
30 |
Barboro P, Borzi L, Repaci E, Ferrari N and Balbi C (2013) Androgen receptor activity is affected by both nuclear matrix localization and the phosphorylation status of the heterogeneous nuclear ribonucleoprotein K in antiandrogen-treated LNCaP cells. PLoS One 8, e79212
DOI
|
31 |
Berthelot K, Estevez Y, Deffieux A and Peruch F (2012) Isopentenyl diphosphate isomerase: A checkpoint to isoprenoid biosynthesis. Biochimie 94, 1621-1634
DOI
|
32 |
Sharon C, Baranwal S, Patel NJ et al (2015) Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo. Oncotarget 6, 15332-15347
DOI
|