Browse > Article
http://dx.doi.org/10.5483/BMBRep.2016.49.2.261

The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster  

Altintas, Ozlem (School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology)
Park, Sangsoon (Department of Life Sciences, Pohang University of Science and Technology)
Lee, Seung-Jae V. (School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology)
Publication Information
BMB Reports / v.49, no.2, 2016 , pp. 81-92 More about this Journal
Abstract
Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway regulates aging in many organisms, ranging from simple invertebrates to mammals, including humans. Many seminal discoveries regarding the roles of IIS in aging and longevity have been made by using the roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. In this review, we describe the mechanisms by which various IIS components regulate aging in C. elegans and D. melanogaster. We also cover systemic and tissue-specific effects of the IIS components on the regulation of lifespan. We further discuss IIS-mediated physiological processes other than aging and their effects on human disease models focusing on C. elegans studies. As both C. elegans and D. melanogaster have been essential for key findings regarding the effects of IIS on organismal aging in general, these invertebrate models will continue to serve as workhorses to help our understanding of mammalian aging.
Keywords
Aging; C. elegans; D. melanogaster; Insulin/IGF-1 signaling; Longevity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Paradis S, Ailion M, Toker A, Thomas JH and Ruvkun G (1999) A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 13, 1438-1452   DOI
2 Paradis S and Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12, 2488-2498   DOI
3 Hertweck M, Gobel C and Baumeister R (2004) C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 6, 577-588   DOI
4 Chen AT, Guo C, Dumas KJ, Ashrafi K and Hu PJ (2013) Effects of Caenorhabditis elegans sgk-1 mutations on lifespan, stress resistance, and DAF-16/FoxO regulation. Aging Cell 12, 932-940   DOI
5 Xiao R, Zhang B, Dong Y et al (2013) A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152, 806-817   DOI
6 Henderson ST and Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11, 1975-1980   DOI
7 Lee RY, Hench J and Ruvkun G (2001) Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 11, 1950-1957   DOI
8 Lin K, Hsin H, Libina N and Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28, 139-145   DOI
9 Cahill CM, Tzivion G, Nasrin N et al (2001) Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J Biol Chem 276, 13402-13410   DOI
10 Staveley BE, Ruel L, Jin J et al (1998) Genetic analysis of protein kinase B (AKT) in Drosophila. Curr Biol 8, 599-602   DOI
11 Poltilove RM, Jacobs AR, Haft CR, Xu P and Taylor SI (2000) Characterization of Drosophila insulin receptor substrate. J Biol Chem 275, 23346-23354   DOI
12 Petruzzelli L, Herrera R, Arenas-Garcia R, Fernandez R, Birnbaum MJ and Rosen OM (1986) Isolation of a Drosophila genomic sequence homologous to the kinase domain of the human insulin receptor and detection of the phosphorylated Drosophila receptor with an anti-peptide antibody. Proc Natl Acad Sci U S A 83, 4710-4714   DOI
13 Fernandez-Almonacid R and Rosen OM (1987) Structure and ligand specificity of the Drosophila melanogaster insulin receptor. Mol Cell Biol 7, 2718-2727   DOI
14 Fernandez R, Tabarini D, Azpiazu N, Frasch M and Schlessinger J (1995) The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO J 14, 3373-3384
15 Marin-Hincapie M and Garofalo RS (1999) The carboxyl terminal extension of the Drosophila insulin receptor homologue binds IRS-1 and influences cell survival. J Biol Chem 274, 24987-24994   DOI
16 Franke TF, Tartof KD and Tsichlis PN (1994) The SH2-like Akt homology (AH) domain of c-akt is present in multiple copies in the genome of vertebrate and invertebrate eucaryotes. Cloning and characterization of the Drosophila melanogaster c-akt homolog Dakt1. Oncogene 9, 141-148
17 Cho KS, Lee JH, Kim S et al (2001) Drosophila phosphoinositide-dependent kinase-1 regulates apoptosis and growth via the phosphoinositide 3-kinase-dependent signaling pathway. Proc Natl Acad Sci U S A 98, 6144-6149   DOI
18 Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ and Tissenbaum HA (2005) JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci U S A 102, 4494-4499   DOI
19 Ogg S, Paradis S, Gottlieb S et al (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994-999   DOI
20 Lin K, Dorman JB, Rodan A and Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319-1322   DOI
21 Curtis R, O'Connor G and DiStefano PS (2006) Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell 5, 119-126   DOI
22 Greer EL, Dowlatshahi D, Banko MR et al (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17, 1646-1656   DOI
23 Apfeld J, O'Connor G, McDonagh T, DiStefano PS and Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18, 3004-3009   DOI
24 Lehtinen MK, Yuan Z, Boag PR et al (2006) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125, 987-1001   DOI
25 Wolff S, Ma H, Burch D, Maciel GA, Hunter T and Dillin A (2006) SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 124, 1039-1053   DOI
26 Seo M, Seo K, Hwang W et al (2015) RNA helicase HEL-1 promotes longevity by specifically activating DAF-16/FOXO transcription factor signaling in Caenorhabditis elegans. Proc Natl Acad Sci U S A 112, E4246-E4255   DOI
27 Goberdhan DC, Paricio N, Goodman EC, Mlodzik M and Wilson C (1999) Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev 13, 3244-3258   DOI
28 Linassier C, MacDougall LK, Domin J and Waterfield MD (1997) Molecular cloning and biochemical characterization of a Drosophila phosphatidylinositol-specific phosphoinositide 3-kinase. Biochem J 321 (Pt 3), 849-856   DOI
29 Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R and Hafen E (2001) An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11, 213-221   DOI
30 Gao X, Neufeld TP and Pan D (2000) Drosophila PTEN regulates cell growth and proliferation through PI3K-dependent and -independent pathways. Dev Biol 221, 404-418   DOI
31 Huang H, Potter CJ, Tao W et al (1999) PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development 126, 5365-5372
32 Bai H, Kang P, Hernandez AM and Tatar M (2013) Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila. PLoS Genet 9, e1003941   DOI
33 Hwangbo DS, Gershman B, Tu MP, Palmer M and Tatar M (2004) Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429, 562-566   DOI
34 Gronke S, Clarke DF, Broughton S, Andrews TD and Partridge L (2010) Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet 6, e1000857   DOI
35 Broughton SJ, Piper MD, Ikeya T et al (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A 102, 3105-3110   DOI
36 Alam H, Williams TW, Dumas KJ et al (2010) EAK-7 controls development and life span by regulating nuclear DAF-16/FoxO activity. Cell Metab 12, 30-41   DOI
37 Chiang WC, Tishkoff DX, Yang B et al (2012) C. elegans SIRT6/7 homolog SIR-2.4 promotes DAF-16 relocalization and function during stress. PLoS Genet 8, e1002948   DOI
38 Hu PJ, Xu J and Ruvkun G (2006) Two membrane-associated tyrosine phosphatase homologs potentiate C. elegans AKT-1/PKB signaling. PLoS Genet 2, e99   DOI
39 Li J, Ebata A, Dong Y, Rizki G, Iwata T and Lee SS (2008) Caenorhabditis elegans HCF-1 functions in longevity maintenance as a DAF-16 regulator. PLoS Biol 6, e233   DOI
40 Berdichevsky A, Viswanathan M, Horvitz HR and Guarente L (2006) C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125, 1165-1177   DOI
41 Li J, Tewari M, Vidal M and Lee SS (2007) The 14-3-3 protein FTT-2 regulates DAF-16 in Caenorhabditis elegans. Dev Biol 301, 82-91   DOI
42 Wang Y, Oh SW, Deplancke B, Luo J, Walhout AJ and Tissenbaum HA (2006) C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO. Mech Ageing Dev 127, 741-747   DOI
43 Lee SS, Kennedy S, Tolonen AC and Ruvkun G (2003) DAF-16 target genes that control C. elegans life-span and metabolism. Science 300, 644-647   DOI
44 Ookuma S, Fukuda M and Nishida E (2003) Identification of a DAF-16 transcriptional target gene, scl-1, that regulates longevity and stress resistance in Caenorhabditis elegans. Curr Biol 13, 427-431   DOI
45 Murphy CT, McCarroll SA, Bargmann CI et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277-283   DOI
46 Nielsen MD, Luo X, Biteau B, Syverson K and Jasper H (2008) 14-3-3 antagonizes FoxO to control growth, apoptosis and longevity in Drosophila. Aging Cell 7, 688-699   DOI
47 Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM and Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107-110   DOI
48 Clancy DJ, Gems D, Harshman LG et al (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104-106   DOI
49 Tu MP, Epstein D and Tatar M (2002) The demography of slow aging in male and female Drosophila mutant for the insulin-receptor substrate homologue chico. Aging Cell 1, 75-80   DOI
50 Demontis F and Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143, 813-825   DOI
51 Giannakou ME, Goss M, Junger MA, Hafen E, Leevers SJ and Partridge L (2004) Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305, 361   DOI
52 Wessells RJ, Fitzgerald E, Cypser JR, Tatar M and Bodmer R (2004) Insulin regulation of heart function in aging fruit flies. Nat Genet 36, 1275-1281   DOI
53 Ford D, Hoe N, Landis GN et al (2007) Alteration of Drosophila life span using conditional, tissue-specific expression of transgenes triggered by doxycyline or RU486/Mifepristone. Exp Gerontol 42, 483-497   DOI
54 Broeck JV (2001) Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides 22, 241-254   DOI
55 Lee SJ, Murphy CT and Kenyon C (2009) Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab 10, 379-391   DOI
56 McElwee J, Bubb K and Thomas JH (2003) Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2, 111-121   DOI
57 Golden TR and Melov S (2004) Microarray analysis of gene expression with age in individual nematodes. Aging Cell 3, 111-124   DOI
58 Halaschek-Wiener J, Khattra JS, McKay S et al (2005) Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. Genome Res 15, 603-615   DOI
59 Tullet JM, Hertweck M, An JH et al (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132, 1025-1038   DOI
60 An JH and Blackwell TK (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17, 1882-1893   DOI
61 An JH, Vranas K, Lucke M et al (2005) Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. Proc Natl Acad Sci U S A 102, 16275-16280   DOI
62 Kahn NW, Rea SL, Moyle S, Kell A and Johnson TE (2008) Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidativestress response in Caenorhabditis elegans. Biochem J 409, 205-213   DOI
63 Oliveira RP, Porter Abate J, Dilks K et al (2009) Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/Nrf. Aging Cell 8, 524-541   DOI
64 Ikeya T, Galic M, Belawat P, Nairz K and Hafen E (2002) Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 12, 1293-1300   DOI
65 Colombani J, Andersen DS and Léopold P (2012) Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 336, 582-585   DOI
66 Garelli A, Gontijo AM, Miguela V, Caparros E and Dominguez M (2012) Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science 336, 579-582   DOI
67 Cao C and Brown MR (2001) Localization of an insulin-like peptide in brains of two flies. Cell Tissue Res 304, 317-321   DOI
68 Rulifson EJ, Kim SK and Nusse R (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296, 1118-1120   DOI
69 Lee KS, Kwon OY, Lee JH et al (2008) Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat Cell Biol 10, 468-475   DOI
70 Grönke S and Partridge L (2010) The functions of insulin-like peptides in insects; in IGFs: Local Repair and Survival Factors Throughout Life Span, Clemmons DR, Robinson I and Christen Y (eds), 105-124, Springer
71 Nassel DR, Liu Y and Luo J (2015) Insulin/IGF signaling and its regulation in Drosophila. Gen Comp Endocrinol 221, 255-266   DOI
72 Haselton A, Sharmin E, Schrader J, Sah M, Poon P and Fridell Y-WC (2010) Partial ablation of adult Drosophila insulin-producing neurons modulates glucose homeostasis and extends life span without insulin resistance. Cell Cycle 9, 3135-3143   DOI
73 Glover-Cutter KM, Lin S and Blackwell TK (2013) Integration of the unfolded protein and oxidative stress responses through SKN-1/Nrf. PLoS Genet 9, e1003701   DOI
74 Choe KP, Przybysz AJ and Strange K (2009) The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans. Mol Cell Biol 29, 2704-2715   DOI
75 Wang J, Robida-Stubbs S, Tullet JM, Rual JF, Vidal M and Blackwell TK (2010) RNAi screening implicates a SKN-1-dependent transcriptional response in stress resistance and longevity deriving from translation inhibition. PLoS Genet 6, e1001048   DOI
76 Staab TA, Griffen TC, Corcoran C, Evgrafov O, Knowles JA and Sieburth D (2013) The conserved SKN-1/Nrf2 stress response pathway regulates synaptic function in Caenorhabditis elegans. PLoS Genet 9, e1003354   DOI
77 Park SK, Tedesco PM and Johnson TE (2009) Oxidative stress and longevity in Caenorhabditis elegans as mediated by SKN-1. Aging Cell 8, 258-269   DOI
78 Pang S, Lynn DA, Lo JY, Paek J and Curran SP (2014) SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation. Nat Commun 5, 5048   DOI
79 Kell A, Ventura N, Kahn N and Johnson TE (2007) Activation of SKN-1 by novel kinases in Caenorhabditis elegans. Free Radic Biol Med 43, 1560-1566   DOI
80 Li X, Matilainen O, Jin C, Glover-Cutter KM, Holmberg CI and Blackwell TK (2011) Specific SKN-1/Nrf stress responses to perturbations in translation elongation and proteasome activity. PLoS Genet 7, e1002119   DOI
81 Ewald CY, Landis JN, Porter Abate J, Murphy CT and Blackwell TK (2015) Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature 519, 97-101   DOI
82 Broughton S, Alic N, Slack C et al (2008) Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLoS One 3, e3721   DOI
83 Jeong DE, Artan M, Seo K and Lee SJ (2012) Regulation of lifespan by chemosensory and thermosensory systems: findings in invertebrates and their implications in mammalian aging. Front Genet 3, 218   DOI
84 Wang MC, Bohmann D and Jasper H (2005) JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121, 115-125   DOI
85 Bauer JH, Chang C, Morris SNS et al (2007) Expression of dominant-negative Dmp53 in the adult fly brain inhibits insulin signaling. Proc Natl Acad Sci U S A 104, 13355-13360   DOI
86 Okamoto N, Yamanaka N, Yagi Y et al (2009) A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila. Dev Cell 17, 885-891   DOI
87 Slaidina M, Delanoue R, Gronke S, Partridge L and Léopold P (2009) A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev Cell 17, 874-884   DOI
88 Bai H, Kang P and Tatar M (2012) Drosophila insulin‐like peptide‐6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin‐like peptide‐2 from the brain. Aging cell 11, 978-985   DOI
89 Holzenberger M, Dupont J, Ducos B et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182-187   DOI
90 Yuan R, Tsaih SW, Petkova SB et al (2009) Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell 8, 277-287   DOI
91 Chiang WC, Ching TT, Lee HC, Mousigian C and Hsu AL (2012) HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity. Cell 148, 322-334   DOI
92 Hsu AL, Murphy CT and Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142-1145   DOI
93 Morley JF and Morimoto RI (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15, 657-664   DOI
94 Cohen E, Bieschke J, Perciavalle RM, Kelly JW and Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313, 1604-1610   DOI
95 Seo K, Choi E, Lee D, Jeong DE, Jang SK and Lee SJ (2013) Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans. Aging Cell 12, 1073-1081   DOI
96 Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J and Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161, 1101-1112
97 Douglas PM, Baird NA, Simic MS et al (2015) Heterotypic signals from neural HSF-1 separate thermotolerance from longevity. Cell Rep 12, 1196-1204   DOI
98 Baird NA, Douglas PM, Simic MS et al (2014) HSF-1-mediated cytoskeletal integrity determines thermotolerance and life span. Science 346, 360-363   DOI
99 Amin J, Ananthan J and Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 8, 3761-3769   DOI
100 Tazearslan C, Cho M and Suh Y (2012) Discovery of functional gene variants associated with human longevity: opportunities and challenges. J Gerontol A Biol Sci Med Sci 67, 376-383   DOI
101 Walker GA and Lithgow GJ (2003) Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2, 131-139   DOI
102 Kay RJ, Boissy RJ, Russnak RH and Candido EP (1986) Efficient transcription of a Caenorhabditis elegans heat shock gene pair in mouse fibroblasts is dependent on multiple promoter elements which can function bidirectionally. Mol Cell Biol 6, 3134-3143   DOI
103 Russnak RH and Candido EP (1985) Locus encoding a family of small heat shock genes in Caenorhabditis elegans: two genes duplicated to form a 3.8-kilobase inverted repeat. Mol Cell Biol 5, 1268-1278   DOI
104 Yokoyama K, Fukumoto K, Murakami T et al (2002) Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Lett 516, 53-57   DOI
105 Pierce SB, Costa M, Wisotzkey R et al (2001) Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 15, 672-686   DOI
106 Li W, Kennedy SG and Ruvkun G (2003) daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev 17, 844-858   DOI
107 Chen Z, Hendricks M, Cornils A, Maier W, Alcedo J and Zhang Y (2013) Two insulin-like peptides antagonistically regulate aversive olfactory learning in C. elegans. Neuron 77, 572-585   DOI
108 Cornils A, Gloeck M, Chen Z, Zhang Y and Alcedo J (2011) Specific insulin-like peptides encode sensory information to regulate distinct developmental processes. Development 138, 1183-1193   DOI
109 Kawli T and Tan MW (2008) Neuroendocrine signals modulate the innate immunity of Caenorhabditis elegans through insulin signaling. Nat Immunol 9, 1415-1424   DOI
110 Murphy CT, Lee SJ and Kenyon C (2007) Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc Natl Acad Sci U S A 104, 19046-19050   DOI
111 Malone EA, Inoue T and Thomas JH (1996) Genetic analysis of the roles of daf-28 and age-1 in regulating Caenorhabditis elegans dauer formation. Genetics 143, 1193-1205
112 Malone EA and Thomas JH (1994) A screen for nonconditional dauer-constitutive mutations in Caenorhabditis elegans. Genetics 136, 879-886
113 Fernandes de Abreu DA, Caballero A, Fardel P et al (2014) An insulin-to-insulin regulatory network orchestrates phenotypic specificity in development and physiology. PLoS Genet 10, e1004225   DOI
114 Ritter AD, Shen Y, Fuxman Bass J et al (2013) Complex expression dynamics and robustness in C. elegans insulin networks. Genome Res 23, 954-965   DOI
115 Hung WL, Wang Y, Chitturi J and Zhen M (2014) A Caenorhabditis elegans developmental decision requires insulin signaling-mediated neuron-intestine communication. Development 141, 1767-1779   DOI
116 Chen Y and Baugh LR (2014) Ins-4 and daf-28 function redundantly to regulate C. elegans L1 arrest. Dev Biol 394, 314-326   DOI
117 Duret L, Guex N, Peitsch MC and Bairoch A (1998) New insulin-like proteins with atypical disulfide bond pattern characterized in Caenorhabditis elegans by comparative sequence analysis and homology modeling. Genome Res 8, 348-353   DOI
118 Ohta A, Ujisawa T, Sonoda S and Kuhara A (2014) Light and pheromone-sensing neurons regulates cold habituation through insulin signalling in Caenorhabditis elegans. Nat Commun 5, 4412
119 Michaelson D, Korta DZ, Capua Y and Hubbard EJ (2010) Insulin signaling promotes germline proliferation in C. elegans. Development 137, 671-680   DOI
120 Leinwand SG and Chalasani SH (2013) Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans. Nat Neurosci 16, 1461-1467   DOI
121 Wolkow CA, Kimura KD, Lee MS and Ruvkun G (2000) Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290, 147-150   DOI
122 Iser WB, Gami MS and Wolkow CA (2007) Insulin signaling in Caenorhabditis elegans regulates both endocrine-like and cell-autonomous outputs. Dev Biol 303, 434-447   DOI
123 Hu PJ (2007) Dauer. WormBook: the online review of C. elegans biology, 1-19
124 Riddle DL and Albert PS (1997) Genetic and Environmental Regulation of Dauer Larva Development; in C. elegans II, Riddle DL, Blumenthal T, Meyer BJ et al (eds), Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY)
125 Libina N, Berman JR and Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115, 489-502   DOI
126 Dillin A, Crawford DK and Kenyon C (2002) Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298, 830-834   DOI
127 Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90, 8905-8909   DOI
128 Gems D, Sutton AJ, Sundermeyer ML et al (1998) Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150, 129-155
129 Vanfleteren JR (1993) Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 292 (Pt 2), 605-608   DOI
130 Honda Y and Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13, 1385-1393
131 Lithgow GJ, White TM, Melov S and Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci U S A 92, 7540-7544   DOI
132 McColl G, Rogers AN, Alavez S et al (2010) Insulin-like signaling determines survival during stress via posttranscriptional mechanisms in C. elegans. Cell Metab 12, 260-272   DOI
133 Scott BA, Avidan MS and Crowder CM (2002) Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science 296, 2388-2391   DOI
134 Mabon ME, Scott BA and Crowder CM (2009) Divergent mechanisms controlling hypoxic sensitivity and lifespan by the DAF-2/insulin/IGF-receptor pathway. PLoS One 4, e7937   DOI
135 Lamitina ST and Strange K (2005) Transcriptional targets of DAF-16 insulin signaling pathway protect C. elegans from extreme hypertonic stress. Am J Physiol Cell Physiol 288, C467-C474   DOI
136 Burkewitz K, Choe K and Strange K (2011) Hypertonic stress induces rapid and widespread protein damage in C. elegans. Am J Physiol Cell Physiol 301, C566-C576   DOI
137 Henis-Korenblit S, Zhang PC, Hansen M et al (2010) Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity. Proc Natl Acad Sci U S A 107, 9730-9735   DOI
138 Murakami S and Johnson TE (1996) A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143, 1207-1218
139 Barsyte D, Lovejoy DA and Lithgow GJ (2001) Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J 15, 627-634   DOI
140 Morley JF, Brignull HR, Weyers JJ and Morimoto RI (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99, 10417-10422   DOI
141 Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM and Korswagen HC (2005) Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308, 1181-1184   DOI
142 Mueller MM, Castells-Roca L, Babu V et al (2014) DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage. Nat Cell Biol 16, 1168-1179   DOI
143 Ermolaeva MA and Schumacher B (2014) Insights from the worm: the C. elegans model for innate immunity. Semin Immunol 26, 303-309   DOI
144 Garsin DA, Villanueva JM, Begun J et al (2003) Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300, 1921   DOI
145 Kerry S, TeKippe M, Gaddis NC and Aballay A (2006) GATA transcription factor required for immunity to bacterial and fungal pathogens. PLoS One 1, e77   DOI
146 Portal-Celhay C, Bradley ER and Blaser MJ (2012) Control of intestinal bacterial proliferation in regulation of lifespan in Caenorhabditis elegans. BMC Micobiol 12, 49   DOI
147 Singh V and Aballay A (2006) Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proc Natl Acad Sci U S A 103, 13092-13097   DOI
148 Papp D, Csermely P and Soti C (2012) A role for SKN-1/Nrf in pathogen resistance and immunosenescence in Caenorhabditis elegans. PLoS Pathog 8, e1002673   DOI
149 Evans EA, Chen WC and Tan MW (2008) The DAF-2 insulin-like signaling pathway independently regulates aging and immunity in C. elegans. Aging Cell 7, 879-893   DOI
150 Evans EA, Kawli T and Tan M-W (2008) Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS Pathog 4, e1000175   DOI
151 Link CD (1995) Expression of human β-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci U S A 92, 9368-9372   DOI
152 Fay DS, Fluet A, Johnson CJ and Link CD (1998) In Vivo Aggregation of β‐Amyloid Peptide Variants. J Neurochem 71, 1616-1625   DOI
153 Link CD, Taft A, Kapulkin V et al (2003) Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model. Neurobiol Aging 24, 397-413   DOI
154 Faber PW, Alter JR, MacDonald ME and Hart AC (1999) Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci U S A 96, 179-184   DOI
155 Mohri-Shiomi A and Garsin DA (2008) Insulin signaling and the heat shock response modulate protein homeostasis in the Caenorhabditis elegans intestine during infection. J Biol Chem 283, 194-201   DOI
156 Satyal SH, Schmidt E, Kitagawa K et al (2000) Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 97, 5750-5755   DOI
157 Parker JA, Connolly JB, Wellington C, Hayden M, Dausset J and Neri C (2001) Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc Natl Acad Sci U S A 98, 13318-13323   DOI
158 Brignull HR, Moore FE, Tang SJ and Morimoto RI (2006) Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J Neurosci 26, 7597-7606   DOI
159 Lakso M, Vartiainen S, Moilanen AM et al (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 86, 165-172   DOI
160 Cao S, Gelwix CC, Caldwell KA and Caldwell GA (2005) Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J Neurosci 25, 3801-3812   DOI
161 Kuwahara T, Koyama A, Gengyo-Ando K et al (2006) Familial Parkinson mutant α-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem 281, 334-340   DOI
162 Kuwahara T, Koyama A, Koyama S et al (2008) A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in ^-synuclein transgenic C. elegans. Hum Mol Genet 17, 2997-3009   DOI
163 Li J, Huang KX and Le WD (2013) Establishing a novel C. elegans model to investigate the role of autophagy in amyotrophic lateral sclerosis. Acta Pharmacol Sin 34, 644-650   DOI
164 Lee Y, An S, Artan M et al (2015) Genes and Pathways That Influence Longevity in Caenorhabditis elegans; in Aging Mechanisms, Mori N and Mook-Jung I (eds), 123-169, Springer Japan
165 Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA and Caldwell GA (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci U S A 105, 728-733   DOI
166 Oeda T, Shimohama S, Kitagawa N et al (2001) Oxidative stress causes abnormal accumulation of familial amyotrophic lateral sclerosis-related mutant SOD1 in transgenic Caenorhabditis elegans. Hum Mol Genet 10, 2013-2023   DOI
167 Gidalevitz T, Krupinski T, Garcia S and Morimoto RI (2009) Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet 5, e1000399   DOI
168 Wang J, Farr GW, Hall DH et al (2009) An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet 5, e1000350   DOI
169 Florez-McClure ML, Hohsfield LA, Fonte G, Bealor MT and Link CD (2007) Decreased insulin-receptor signaling promotes the autophagic degradation of β-amyloid peptide in C. elegans. Autophagy 3, 569-580   DOI
170 David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL and Kenyon C (2010) Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol 8, e1000450   DOI
171 Wang H, Lim PJ, Yin C, Rieckher M, Vogel BE and Monteiro MJ (2006) Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington's disease by ubiquilin. Hum Mol Genet 15, 1025-1041   DOI
172 Morris JZ, Tissenbaum HA and Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382, 536-539   DOI
173 Giannakou ME and Partridge L (2007) Role of insulin-like signalling in Drosophila lifespan. Trends Biochem Sci 32, 180-188   DOI
174 Fontana L, Partridge L and Longo VD (2010) Extending healthy life span--from yeast to humans. Science 328, 321-326   DOI
175 Kenyon CJ (2010) The genetics of ageing. Nature 464, 504-512   DOI
176 Kimura KD, Tissenbaum HA, Liu Y and Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942-946   DOI
177 Friedman DB and Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75-86
178 Kenyon C, Chang J, Gensch E, Rudner A and Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366, 461-464   DOI
179 Klass MR (1983) A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 22, 279-286   DOI
180 Wolkow CA, Munoz MJ, Riddle DL and Ruvkun G (2002) Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin-like signaling pathway. J Biol Chem 277, 49591-49597   DOI
181 Zhou K, Pandol S, Bokoch G and Traynor-Kaplan AE (1998) Disruption of Dictyostelium PI3K genes reduces [32P]phosphatidylinositol 3,4 bisphosphate and [32P]phosphatidylinositol trisphosphate levels, alters F-actin distribution and impairs pinocytosis. J Cell Sci 111 (Pt 2), 283-294
182 Parker JA, Metzler M, Georgiou J et al (2007) Huntingtininteracting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci 27, 11056-11064   DOI
183 Wang H, Lim PJ, Karbowski M and Monteiro MJ (2009) Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum Mol Genet 18, 737-752   DOI
184 Steinkraus KA, Smith ED, Davis C et al (2008) Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell 7, 394-404   DOI
185 Faber PW, Voisine C, King DC, Bates EA and Hart AC (2002) Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. Proc Natl Acad Sci U S A 99, 17131-17136   DOI
186 Parker JA, Arango M, Abderrahmane S et al (2005) Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 37, 349-350   DOI
187 Bates EA, Victor M, Jones AK, Shi Y and Hart AC (2006) Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J Neurosci 26, 2830-2838   DOI
188 Schapira AH and Jenner P (2011) Etiology and pathogenesis of Parkinson's disease. Mov Disord 26, 1049-1055   DOI
189 Knight AL, Yan X, Hamamichi S et al (2014) The glycolytic enzyme, GPI, is a functionally conserved modifier of dopaminergic neurodegeneration in Parkinson's models. Cell Metab 20, 145-157   DOI
190 Pasinelli P and Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7, 710-723   DOI
191 Rouault JP, Kuwabara PE, Sinilnikova OM, Duret L, Thierry-Mieg D and Billaud M (1999) Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN. Curr Biol 9, 329-332   DOI
192 Ogg S and Ruvkun G (1998) The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell 2, 887-893   DOI
193 Gil EB, Malone Link E, Liu LX, Johnson CD and Lees JA (1999) Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. Proc Natl Acad Sci U S A 96, 2925-2930   DOI
194 Mihaylova VT, Borland CZ, Manjarrez L, Stern MJ and Sun H (1999) The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc Natl Acad Sci U S A 96, 7427-7432   DOI
195 Dorman JB, Albinder B, Shroyer T and Kenyon C (1995) The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141, 1399-1406
196 Larsen PL, Albert PS and Riddle DL (1995) Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139, 1567-1583
197 Gottlieb S and Ruvkun G (1994) daf-2, daf-16 and daf-23: genetically interacting genes controlling Dauer formation in Caenorhabditis elegans. Genetics 137, 107-120
198 Solari F, Bourbon-Piffaut A, Masse I, Payrastre B, Chan AM and Billaud M (2005) The human tumour suppressor PTEN regulates longevity and dauer formation in Caenorhabditis elegans. Oncogene 24, 20-27   DOI
199 Cudkowicz M, McKenna‐Yasek D, Sapp P et al (1997) Epidemiology of mutations in superoxide dismutase in amyotrophic lateal sclerosis. Ann Neurol 41, 210-221   DOI
200 Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59-62   DOI
201 Bohni R, Riesgo-Escovar J, Oldham S et al (1999) Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97, 865-875   DOI
202 Verdu J, Buratovich MA, Wilder EL and Birnbaum MJ (1999) Cell-autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nat Cell Biol 1, 500-506   DOI
203 Weinkove D, Neufeld TP, Twardzik T, Waterfield MD and Leevers SJ (1999) Regulation of imaginal disc cell size, cell number and organ size by Drosophila class I(A) phosphoinositide 3-kinase and its adaptor. Curr Biol 9, 1019-1029   DOI
204 Leevers SJ, Weinkove D, MacDougall LK, Hafen E and Waterfield MD (1996) The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. EMBO J 15, 6584-6594
205 Junger MA, Rintelen F, Stocker H et al (2003) The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol 2, 20   DOI
206 Kramer JM, Davidge JT, Lockyer JM and Staveley BE (2003) Expression of Drosophila FOXO regulates growth and can phenocopy starvation. BMC Dev Biol 3, 5   DOI
207 Puig O, Marr MT, Ruhf ML and Tjian R (2003) Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev 17, 2006-2020   DOI