The pathophysiological role of dendritic cell subsets in psoriasis |
Kim, Tae-Gyun
(Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine)
Kim, Dae Suk (Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine) Kim, Hyoung-Pyo (Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine) Lee, Min-Geol (Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine) |
1 | Wollenberg, A., Wagner, M., Gunther, S., Towarowski, A., Tuma, E., Moderer, M., Rothenfusser, S., Wetzel, S., Endres, S. and Hartmann, G. (2002) Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J. Invest. Dermatol. 119, 1096-1102. DOI ScienceOn |
2 | Gilliet, M., Conrad, C., Geiges, M., Cozzio, A., Thurlimann, W., Burg, G., Nestle, F. O. and Dummer, R. (2004) Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch. Dermatol. 140, 1490-1495. |
3 | Abrams, J. R., Kelley, S. L., Hayes, E., Kikuchi, T., Brown, M. J., Kang, S., Lebwohl, M. G., Guzzo, C. A., Jegasothy, B. V., Linsley, P. S. and Krueger, J. G. (2000) Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J. Exp. Med. 192, 681-694. DOI |
4 | Lande, R., Gregorio, J., Facchinetti, V., Chatterjee, B., Wang, Y. H., Homey, B., Cao, W., Wang, Y. H., Su, B., Nestle, F. O., Zal, T., Mellman, I., Schroder, J. M., Liu, Y. J. and Gilliet, M. (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564-569. DOI ScienceOn |
5 | Chu, C. C., Di Meglio, P. and Nestle, F. O. (2011) Harnessing dendritic cells in inflammatory skin diseases. Semin. Immunol. 23, 28-41. |
6 | Zaba, L. C., Fuentes-Duculan, J., Eungdamrong, N. J., Abello, M. V., Novitskaya, I., Pierson, K. C., Gonzalez, J., Krueger, J. G. and Lowes, M. A. (2009) Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J. Invest. Dermatol. 129, 79-88. DOI ScienceOn |
7 | Nickoloff, B. J., Karabin, G. D., Barker, J. N., Griffiths, C. E., Sarma, V., Mitra, R. S., Elder, J. T., Kunkel, S. L. and Dixit, V. M. (1991) Cellular localization of interleukin-8 and its inducer, tumor necrosis factor-alpha in psoriasis. Am. J. Pathol. 138, 129-140. |
8 | Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. and Pamer, E. G. (2003) TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59-70. DOI ScienceOn |
9 | Zheng, Y., Danilenko, D. M., Valdez, P., Kasman, I., Eastham-Anderson, J., Wu, J. and Ouyang, W. (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648-651. DOI ScienceOn |
10 | Nograles, K. E. and Krueger, J. G. (2011) Anti-cytokine therapies for psoriasis. Exp. Cell Res. 317, 1293-1300. DOI ScienceOn |
11 | Annunziato, F., Cosmi, L., Santarlasci, V., Maggi, L., Liotta, F., Mazzinghi, B., Parente, E., Fili, L., Ferri, S., Frosali, F., Giudici, F., Romagnani, P., Parronchi, P., Tonelli, F., Maggi, E. and Romagnani, S. (2007) Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204, 1849-1861. DOI ScienceOn |
12 | Chan, J. R., Blumenschein, W., Murphy, E., Diveu, C., Wiekowski, M., Abbondanzo, S., Lucian, L., Geissler, R., Brodie, S., Kimball, A. B., Gorman, D. M., Smith, K., de Waal Malefyt, R., Kastelein, R. A., McClanahan, T. K. and Bowman, E. P. (2006) IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J. Exp. Med. 203, 2577-2587. DOI ScienceOn |
13 | Yawalkar, N., Tscharner, G. G., Hunger, R. E. and Hassan, A. S. (2009) Increased expression of IL-12p70 and IL-23 by multiple dendritic cell and macrophage subsets in plaque psoriasis. J. Dermatol. Sci. 54, 99-105. DOI ScienceOn |
14 | Papp, K. A., Langley, R. G., Lebwohl, M., Krueger, G. G., Szapary, P., Yeilding, N., Guzzo, C., Hsu, M. C., Wang, Y., Li, S., Dooley, L. T., Reich, K. and investigators, P. s. (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371, 1675-1684. DOI ScienceOn |
15 | Fujita, H., Shemer, A., Suarez-Farinas, M., Johnson- Huang, L. M., Tintle, S., Cardinale, I., Fuentes-Duculan, J., Novitskaya, I., Carucci, J. A., Krueger, J. G. and Guttman-Yassky, E. (2011) Lesional dendritic cells in patients with chronic atopic dermatitis and psoriasis exhibit parallel ability to activate T-cell subsets. J. Allergy Clin. Immunol. 128, 574-582 e512. DOI ScienceOn |
16 | Reich, K., Yasothan, U. and Kirkpatrick, P. (2009) Ustekinumab. Nat. Rev. Drug. Discov. 8, 355-356. DOI ScienceOn |
17 | Leonardi, C. L., Kimball, A. B., Papp, K. A., Yeilding, N., Guzzo, C., Wang, Y., Li, S., Dooley, L. T. and Gordon, K. B. (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double- blind, placebo-controlled trial (PHOENIX 1). Lancet 371, 1665-1674. DOI ScienceOn |
18 | Kim, I. H., West, C. E., Kwatra, S. G., Feldman, S. R. and O'Neill, J. L. (2012) Comparative efficacy of biologics in psoriasis: a review. Am. J. Clin. Dermatol. 13, 365-374. DOI ScienceOn |
19 | Hansel, A., Gunther, C., Ingwersen, J., Starke, J., Schmitz, M., Bachmann, M., Meurer, M., Rieber, E. P. and Schakel, K. (2011) Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses. J. Allergy Clin. Immunol. 127, 787-794 e781-789. DOI ScienceOn |
20 | Brunner, P. M., Koszik, F., Reininger, B., Kalb, M. L., Bauer, W. and Stingl, G. (2013) Infliximab induces downregulation of the IL-12/IL-23 axis in 6-sulfo-LacNac (slan)+ dendritic cells and macrophages. J. Allergy Clin. Immunol. 132, 1184-1193 e1188. DOI ScienceOn |
21 | Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., Dalod, M., Grau, V., Hart, D. N., Leenen, P. J., Liu, Y. J., MacPherson, G., Randolph, G. J., Scherberich, J., Schmitz, J., Shortman, K., Sozzani, S., Strobl, H., Zembala, M., Austyn, J. M. and Lutz, M. B. (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116, e74-80. DOI |
22 | Cros, J., Cagnard, N., Woollard, K., Patey, N., Zhang, S. Y., Senechal, B., Puel, A., Biswas, S. K., Moshous, D., Picard, C., Jais, J. P., D'Cruz, D., Casanova, J. L., Trouillet, C. and Geissmann, F. (2010) Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33, 375-386. DOI ScienceOn |
23 | Cumberbatch, M., Singh, M., Dearman, R. J., Young, H. S., Kimber, I. and Griffiths, C. E. (2006) Impaired Langerhans cell migration in psoriasis. J. Exp. Med. 203, 953-960. DOI ScienceOn |
24 | Tsai, T. F., Wang, T. S., Hung, S. T., Tsai, P. I., Schenkel, B., Zhang, M. and Tang, C. H. (2011) Epidemiology and comorbidities of psoriasis patients in a national database in Taiwan. J. Dermatol. Sci. 63, 40-46. DOI ScienceOn |
25 | Lowes, M. A., Bowcock, A. M. and Krueger, J. G. (2007) Pathogenesis and therapy of psoriasis. Nature 445, 866-873. DOI ScienceOn |
26 | Christophers, E. (2001) Psoriasis--epidemiology and clinical spectrum. Clin. Exp. Dermatol. 26, 314-320. DOI ScienceOn |
27 | Lew, W., Lee, E. and Krueger, J. G. (2004) Psoriasis genomics: analysis of proinflammatory (type 1) gene expression in large plaque (Western) and small plaque (Asian) psoriasis vulgaris. Br. J. Dermatol. 150, 668-676. DOI ScienceOn |
28 | Kim, N., Thrash, B. and Menter, A. (2010) Comorbidities in psoriasis patients. Semin. Cutan. Med. Surg. 29, 10-15. |
29 | Davidovici, B. B., Sattar, N., Prinz, J., Puig, L., Emery, P., Barker, J. N., van de Kerkhof, P., Stahle, M., Nestle, F. O., Girolomoni, G. and Krueger, J. G. (2010) Psoriasis and systemic inflammatory diseases: potential mechanistic links between skin disease and co-morbid conditions. J. Invest. Dermatol. 130, 1785-1796. DOI ScienceOn |
30 | Gottlieb, A. B. and Dann, F. (2009) Comorbidities in patients with psoriasis. Am. J. Med. 122, 1150 e1151-1159. |
31 | Ahmed, A., Leon, A., Butler, D. C. and Reichenberg, J. (2013) Quality-of-life effects of common dermatological diseases. Semin. Cutan. Med. Surg. 32, 101-109. |
32 | Nestle, F. O., Kaplan, D. H. and Barker, J. (2009) Psoriasis. N. Engl. J. Med. 361, 496-509. DOI ScienceOn |
33 | Martin, D. A., Towne, J. E., Kricorian, G., Klekotka, P., Gudjonsson, J. E., Krueger, J. G. and Russell, C. B. (2013) The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J. Invest. Dermatol. 133, 17-26. DOI ScienceOn |
34 | Lew, W., Bowcock, A. M. and Krueger, J. G. (2004) Psoriasis vulgaris: cutaneous lymphoid tissue supports T-cell activation and "Type 1" inflammatory gene expression. Trends. Immunol. 25, 295-305. DOI ScienceOn |
35 | Biedermann, T., Rocken, M. and Carballido, J. M. (2004) TH1 and TH2 lymphocyte development and regulation of TH cell-mediated immune responses of the skin. J. Investig. Dermatol. Symp. Proc. 9, 5-14. |
36 | Di Cesare, A., Di Meglio, P. and Nestle, F. O. (2009) The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J. Invest. Dermatol. 129, 1339-1350. DOI ScienceOn |
37 | Lowes, M. A., Kikuchi, T., Fuentes-Duculan, J., Cardinale, I., Zaba, L. C., Haider, A. S., Bowman, E. P. and Krueger, J. G. (2008) Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J. Invest. Dermatol. 128, 1207-1211. DOI ScienceOn |
38 | Miossec, P., Korn, T. and Kuchroo, V. K. (2009) Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 361, 888-898. DOI ScienceOn |
39 | Lee, Y. (2013) The role of interleukin-17 in bone metabolism and inflammatory skeletal diseases. BMB Rep. 46, 479-483. 과학기술학회마을 DOI ScienceOn |
40 | Lee, E., Trepicchio, W. L., Oestreicher, J. L., Pittman, D., Wang, F., Chamian, F., Dhodapkar, M. and Krueger, J. G. (2004) Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J. Exp. Med. 199, 125-130. DOI |
41 | Chang, E. Y., Hammerberg, C., Fisher, G., Baadsgaard, O., Ellis, C. N., Voorhees, J. J. and Cooper, K. D. (1992) T-cell activation is potentiated by cytokines released by lesional psoriatic, but not normal, epidermis. Arch. Dermatol. 128, 1479-1485. DOI |
42 | Leonardi, C., Matheson, R., Zachariae, C., Cameron, G., Li, L., Edson-Heredia, E., Braun, D. and Banerjee, S. (2012) Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 366, 1190-1199. DOI ScienceOn |
43 | Papp, K. A., Leonardi, C., Menter, A., Ortonne, J. P., Krueger, J. G., Kricorian, G., Aras, G., Li, J., Russell, C. B., Thompson, E. H. and Baumgartner, S. (2012) Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med. 366, 1181-1189. DOI ScienceOn |
44 | Lee, M. Y., Shin, M. C. and Yang, V. C. (2013) Transcutaneous antigen delivery system. BMB Rep. 46, 17-24. 과학기술학회마을 DOI ScienceOn |
45 | Bos, J. D., Hagenaars, C., Das, P. K., Krieg, S. R., Voorn, W. J. and Kapsenberg, M. L. (1989) Predominance of "memory" T cells (CD4+, CDw29+) over "naive" T cells (CD4+, CD45R+) in both normal and diseased human skin. Arch. Dermatol. Res. 281, 24-30. DOI |
46 | Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature 392, 245-252. DOI ScienceOn |
47 | Steinman, R. M. (2012) Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1-22. DOI ScienceOn |
48 | Zaba, L. C., Krueger, J. G. and Lowes, M. A. (2009) Resident and "inflammatory" dendritic cells in human skin. J. Invest. Dermatol. 129, 302-308. DOI ScienceOn |
49 | Breathnach, A. S. and Wyllie, L. M. (1965) Electron Microscopy of Melanocytes and Langerhans Cells in Human Fetal Epidermis at Fourteen Weeks. J. Invest. Dermatol. 44, 51-60. DOI |
50 | Collin, M., McGovern, N. and Haniffa, M. (2013) Human dendritic cell subsets. Immunology 140, 22-30. DOI ScienceOn |
51 | Romani, N., Brunner, P. M. and Stingl, G. (2012) Changing views of the role of Langerhans cells. J. Invest. Dermatol. 132, 872-881. DOI ScienceOn |
52 | Hunger, R. E., Sieling, P. A., Ochoa, M. T., Sugaya, M., Burdick, A. E., Rea, T. H., Brennan, P. J., Belisle, J. T., Blauvelt, A., Porcelli, S. A. and Modlin, R. L. (2004) Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J. Clin. Invest. 113, 701-708. DOI |
53 | Cerio, R., Griffiths, C. E., Cooper, K. D., Nickoloff, B. J. and Headington, J. T. (1989) Characterization of factor XIIIa positive dermal dendritic cells in normal and inflamed skin. Br. J. Dermatol. 121, 421-431. DOI ScienceOn |
54 | Merad, M., Manz, M. G., Karsunky, H., Wagers, A., Peters, W., Charo, I., Weissman, I. L., Cyster, J. G. and Engleman, E. G. (2002) Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3, 1135-1141. DOI ScienceOn |
55 | Igyarto, B. Z. and Kaplan, D. H. (2010) The evolving function of Langerhans cells in adaptive skin immunity. Immunol. Cell Biol. 88, 361-365. DOI ScienceOn |
56 | Fujita, H., Nograles, K. E., Kikuchi, T., Gonzalez, J., Carucci, J. A. and Krueger, J. G. (2009) Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production. Proc. Natl. Acad. Sci. U. S. A. 106, 21795-21800. DOI ScienceOn |
57 | de Jong, A., Pena-Cruz, V., Cheng, T. Y., Clark, R. A., Van Rhijn, I. and Moody, D. B. (2010) CD1a-autoreactive T cells are a normal component of the human alphabeta T cell repertoire. Nat. Immunol. 11, 1102-1109. DOI ScienceOn |
58 | Seneschal, J., Clark, R. A., Gehad, A., Baecher-Allan, C. M. and Kupper, T. S. (2012) Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36, 873-884. DOI ScienceOn |
59 | Zaba, L. C., Fuentes-Duculan, J., Steinman, R. M., Krueger, J. G. and Lowes, M. A. (2007) Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J. Clin. Invest. 117, 2517-2525. DOI ScienceOn |
60 | Meunier, L., Gonzalez-Ramos, A. and Cooper, K. D. (1993) Heterogeneous populations of class II MHC+ cells in human dermal cell suspensions. Identification of a small subset responsible for potent dermal antigen- presenting cell activity with features analogous to Langerhans cells. J. Immunol. 151, 4067-4080. |
61 | Morelli, A. E., Rubin, J. P., Erdos, G., Tkacheva, O. A., Mathers, A. R., Zahorchak, A. F., Thomson, A. W., Falo, L. D. Jr. and Larregina, A. T. (2005) CD4+ T cell responses elicited by different subsets of human skin migratory dendritic cells. J. Immunol. 175, 7905-7915. DOI |
62 | Mathers, A. R., Janelsins, B. M., Rubin, J. P., Tkacheva, O. A., Shufesky, W. J., Watkins, S. C., Morelli, A. E. and Larregina, A. T. (2009) Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses. J. Immunol. 182, 921-933. DOI |
63 | MacDonald, K. P., Munster, D. J., Clark, G. J., Dzionek, A., Schmitz, J. and Hart, D. N. (2002) Characterization of human blood dendritic cell subsets. Blood 100, 4512-4520. DOI ScienceOn |
64 | Furio, L., Briotet, I., Journeaux, A., Billard, H. and Peguet-Navarro, J. (2010) Human langerhans cells are more efficient than CD14(-)CD1c(+) dermal dendritic cells at priming naive CD4(+) T cells. J. Invest. Dermatol. 130, 1345-1354. DOI ScienceOn |
65 | Penel-Sotirakis, K., Simonazzi, E., Peguet-Navarro, J. and Rozieres, A. (2012) Differential capacity of human skin dendritic cells to polarize CD4+ T cells into IL-17, IL-21 and IL-22 producing cells. PLoS One 7, e45680. DOI |
66 | Dorner, B. G., Dorner, M. B., Zhou, X., Opitz, C., Mora, A., Guttler, S., Hutloff, A., Mages, H. W., Ranke, K., Schaefer, M., Jack, R. S., Henn, V. and Kroczek, R. A. (2009) Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31, 823-833. DOI ScienceOn |
67 | Haniffa, M., Shin, A., Bigley, V., McGovern, N., Teo, P., See, P., Wasan, P. S., Wang, X. N., Malinarich, F., Malleret, B., Larbi, A., Tan, P., Zhao, H., Poidinger, M., Pagan, S., Cookson, S., Dickinson, R., Dimmick, I., Jarrett, R. F., Renia, L., Tam, J., Song, C., Connolly, J., Chan, J. K., Gehring, A., Bertoletti, A., Collin, M. and Ginhoux, F. (2012) Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37, 60-73. DOI |
68 | Bachem, A., Guttler, S., Hartung, E., Ebstein, F., Schaefer, M., Tannert, A., Salama, A., Movassaghi, K., Opitz, C., Mages, H. W., Henn, V., Kloetzel, P. M., Gurka, S. and Kroczek, R. A. (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 207, 1273-1281. DOI ScienceOn |
69 | Crozat, K., Guiton, R., Contreras, V., Feuillet, V., Dutertre, C. A., Ventre, E., Vu Manh, T. P., Baranek, T., Storset, A. K., Marvel, J., Boudinot, P., Hosmalin, A., Schwartz-Cornil, I. and Dalod, M. (2010) The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J. Exp. Med. 207, 1283-1292. DOI ScienceOn |
70 | Jongbloed, S. L., Kassianos, A. J., McDonald, K. J., Clark, G. J., Ju, X., Angel, C. E., Chen, C. J., Dunbar, P. R., Wadley, R. B., Jeet, V., Vulink, A. J., Hart, D. N. and Radford, K. J. (2010) Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207, 1247-1260. DOI ScienceOn |
71 | Matta, B. M., Castellaneta, A. and Thomson, A. W. (2010) Tolerogenic plasmacytoid DC. Eur. J. Immunol. 40, 2667-2676. DOI ScienceOn |
72 | Sancho, D., Joffre, O. P., Keller, A. M., Rogers, N. C., Martinez, D., Hernanz-Falcon, P., Rosewell, I. and Reis e Sousa, C. (2009) Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899-903. DOI ScienceOn |
73 | Reizis, B., Bunin, A., Ghosh, H. S., Lewis, K. L. and Sisirak, V. (2011) Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. 29, 163-183. DOI ScienceOn |
74 | Siegal, F. P., Kadowaki, N., Shodell, M., Fitzgerald- Bocarsly, P. A., Shah, K., Ho, S., Antonenko, S. and Liu, Y. J. (1999) The nature of the principal type 1 interferon- producing cells in human blood. Science 284, 1835-1837. DOI ScienceOn |
75 | Nograles, K. E., Davidovici, B. and Krueger, J. G. (2010) New insights in the immunologic basis of psoriasis. Semin. Cutan. Med. Surg. 29, 3-9. |
76 | Ebner, S., Ehammer, Z., Holzmann, S., Schwingshackl, P., Forstner, M., Stoitzner, P., Huemer, G. M., Fritsch, P. and Romani, N. (2004) Expression of C-type lectin receptors by subsets of dendritic cells in human skin. Int. Immunol. 16, 877-887. DOI ScienceOn |
77 | Zaba, L. C., Cardinale, I., Gilleaudeau, P., Sullivan- Whalen, M., Suarez-Farinas, M., Fuentes-Duculan, J., Novitskaya, I., Khatcherian, A., Bluth, M. J., Lowes, M. A. and Krueger, J. G. (2007) Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 204, 3183-3194. DOI ScienceOn |
78 | Carragher, D. M., Rangel-Moreno, J. and Randall, T. D. (2008) Ectopic lymphoid tissues and local immunity. Semin. Immunol. 20, 26-42. |
79 | Guttman-Yassky, E., Nograles, K. E. and Krueger, J. G. (2011) Contrasting pathogenesis of atopic dermatitis and psoriasis--part II: immune cell subsets and therapeutic concepts. J. Allergy Clin. Immunol. 127, 1420-1432. DOI ScienceOn |
80 | Morganroth, G. S., Chan, L. S., Weinstein, G. D., Voorhees, J. J. and Cooper, K. D. (1991) Proliferating cells in psoriatic dermis are comprised primarily of T cells, endothelial cells, and factor XIIIa+ perivascular dendritic cells. J. Invest. Dermatol. 96, 333-340. DOI ScienceOn |
81 | Chamian, F., Lowes, M. A., Lin, S. L., Lee, E., Kikuchi, T., Gilleaudeau, P., Sullivan-Whalen, M., Cardinale, I., Khatcherian, A., Novitskaya, I., Wittkowski, K. M. and Krueger, J. G. (2005) Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc. Natl. Acad. Sci. U. S. A. 102, 2075-2080. DOI ScienceOn |
82 | Nestle, F. O., Turka, L. A. and Nickoloff, B. J. (1994) Characterization of dermal dendritic cells in psoriasis. Autostimulation of T lymphocytes and induction of Th1 type cytokines. J. Clin. Invest. 94, 202-209. DOI ScienceOn |
83 | Miller, G. T., Hochman, P. S., Meier, W., Tizard, R., Bixler, S. A., Rosa, M. D. and Wallner, B. P. (1993) Specific interaction of lymphocyte function-associated antigen 3 with CD2 can inhibit T cell responses. J. Exp. Med. 178, 211-222. DOI |
84 | Ellis, C. N. and Krueger, G. G. (2001) Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N. Engl. J. Med. 345, 248-255. DOI ScienceOn |
85 | Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. and Dustin, M. L. (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221-227. DOI ScienceOn |
86 | Homey, B. and Meller, S. (2008) Chemokines and other mediators as therapeutic targets in psoriasis vulgaris. Clin. Dermatol. 26, 539-545. DOI ScienceOn |
87 | Lebwohl, M., Tyring, S. K., Hamilton, T. K., Toth, D., Glazer, S., Tawfik, N. H., Walicke, P., Dummer, W., Wang, X., Garovoy, M. R. and Pariser, D. (2003) A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N. Engl. J. Med. 349, 2004-2013. DOI ScienceOn |
88 | Nickoloff, B. J., Xin, H., Nestle, F. O. and Qin, J. Z. (2007) The cytokine and chemokine network in psoriasis. Clin. Dermatol. 25, 568-573. DOI ScienceOn |
89 | Ganguly, D., Chamilos, G., Lande, R., Gregorio, J., Meller, S., Facchinetti, V., Homey, B., Barrat, F. J., Zal, T. and Gilliet, M. (2009) Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med. 206, 1983-1994. DOI ScienceOn |
90 | Mitsui, H., Suarez-Farinas, M., Belkin, D. A., Levenkova, N., Fuentes-Duculan, J., Coats, I., Fujita, H. and Krueger, J. G. (2012) Combined use of laser capture microdissection and cDNA microarray analysis identifies locally expressed disease-related genes in focal regions of psoriasis vulgaris skin lesions. J. Invest. Dermatol. 132, 1615-1626. DOI ScienceOn |
91 | Kim, T. G., Jee, H., Fuentes-Duculan, J., Wu, W. H., Byamba, D., Kim, D. S., Kim, D. Y., Lew, D. H., Yang, W. I., Krueger, J. G. and Lee, M. G. (2013) Dermal Clusters of Mature Dendritic Cells and T Cells Are Associated with the CCL20/CCR6 Chemokine System in Chronic Psoriasis. J. Invest. Dermatol. 10.1038/jid.2013.534. DOI ScienceOn |
92 | Valladeau, J., Ravel, O., Dezutter-Dambuyant, C., Moore, K., Kleijmeer, M., Liu, Y., Duvert-Frances, V., Vincent, C., Schmitt, D., Davoust, J., Caux, C., Lebecque, S. and Saeland, S. (2000) Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12, 71-81. DOI ScienceOn |
93 | Ghoreschi, K., Weigert, C. and Rocken, M. (2007) Immunopathogenesis and role of T cells in psoriasis. Clin. Dermatol. 25, 574-580. DOI ScienceOn |
94 | Weaver, C. T., Elson, C. O., Fouser, L. A. and Kolls, J. K. (2013) The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu. Rev. Pathol. 8, 477-512. DOI ScienceOn |
95 | Johnson-Huang, L. M., McNutt, N. S., Krueger, J. G. and Lowes, M. A. (2009) Cytokine-producing dendritic cells in the pathogenesis of inflammatory skin diseases. J. Clin. Immunol. 29, 247-256. DOI |
96 | Shortman, K. and Heath, W. R. (2010) The CD8+ dendritic cell subset. Immunol. Rev. 234, 18-31. DOI ScienceOn |
97 | Zaba, L. C., Fuentes-Duculan, J., Eungdamrong, N. J., Johnson-Huang, L. M., Nograles, K. E., White, T. R., Pierson, K. C., Lentini, T., Suarez-Farinas, M., Lowes, M. A. and Krueger, J. G. (2010) Identification of TNF-related apoptosis-inducing ligand and other molecules that distinguish inflammatory from resident dendritic cells in patients with psoriasis. J. Allergy Clin. Immunol. 125, 1261-1268 e1269. DOI ScienceOn |
98 | Lowes, M. A., Chamian, F., Abello, M. V., Fuentes-Duculan, J., Lin, S. L., Nussbaum, R., Novitskaya, I., Carbonaro, H., Cardinale, I., Kikuchi, T., Gilleaudeau, P., Sullivan-Whalen, M., Wittkowski, K. M., Papp, K., Garovoy, M., Dummer, W., Steinman, R. M. and Krueger, J. G. (2005) Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc. Natl. Acad. Sci. U. S. A. 102, 19057-19062. DOI ScienceOn |
99 | Sallusto, F., Mackay, C. R. and Lanzavecchia, A. (2000) The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593-620. DOI ScienceOn |
100 | Leonardi, C. L., Powers, J. L., Matheson, R. T., Goffe, B. S., Zitnik, R., Wang, A., Gottlieb, A. B. and Etanercept Psoriasis Study, G. (2003) Etanercept as monotherapy in patients with psoriasis. N. Engl. J. Med. 349, 2014-2022. DOI ScienceOn |
101 | Shaw, F. L., Cumberbatch, M., Kleyn, C. E., Begum, R., Dearman, R. J., Kimber, I. and Griffiths, C. E. (2010) Langerhans cell mobilization distinguishes between early-onset and late-onset psoriasis. J. Invest. Dermatol. 130, 1940-1942. DOI ScienceOn |
102 | Corcoran, L., Ferrero, I., Vremec, D., Lucas, K., Waithman, J., O'Keeffe, M., Wu, L., Wilson, A. and Shortman, K. (2003) The lymphoid past of mouse plasmacytoid cells and thymic dendritic cells. J. Immunol. 170, 4926-4932. DOI |
103 | Nestle, F. O., Conrad, C., Tun-Kyi, A., Homey, B., Gombert, M., Boyman, O., Burg, G., Liu, Y. J. and Gilliet, M. (2005) Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J. Exp. Med. 202, 135-143. DOI ScienceOn |