Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.2.014

The pathophysiological role of dendritic cell subsets in psoriasis  

Kim, Tae-Gyun (Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine)
Kim, Dae Suk (Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine)
Kim, Hyoung-Pyo (Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine)
Lee, Min-Geol (Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine)
Publication Information
BMB Reports / v.47, no.2, 2014 , pp. 60-68 More about this Journal
Abstract
Psoriasis is a chronic inflammatory disorder characterized by an erythematous scaly plaque of the skin and is occasionally accompanied by systemic complications. In the psoriatic lesions, an increased number of cytokine-producing dendritic cells and activated T cells are observed, which indicate that psoriasis is a prototype of an immune-mediated dermatosis. During the last decade, emerging studies demonstrate novel roles for the dendritic cell subsets in the process of disease initiation and maintenance of psoriasis. In addition, recently discovered anti-psoriatic therapies, which specifically target inflammatory cytokines produced by lesional dendritic cells, bring much better clinical improvement compared to conventional treatments. These new therapies implicate the crucial importance of dendritic cells in psoriasis pathogenesis. This review will summarize and discuss the dendritic cell subsets of the human skin and their pathophysiological involvement in psoriasis based on mouse- and patient-oriented studies.
Keywords
Dendritic cells; Psoriasis; Skin;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wollenberg, A., Wagner, M., Gunther, S., Towarowski, A., Tuma, E., Moderer, M., Rothenfusser, S., Wetzel, S., Endres, S. and Hartmann, G. (2002) Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J. Invest. Dermatol. 119, 1096-1102.   DOI   ScienceOn
2 Gilliet, M., Conrad, C., Geiges, M., Cozzio, A., Thurlimann, W., Burg, G., Nestle, F. O. and Dummer, R. (2004) Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch. Dermatol. 140, 1490-1495.
3 Abrams, J. R., Kelley, S. L., Hayes, E., Kikuchi, T., Brown, M. J., Kang, S., Lebwohl, M. G., Guzzo, C. A., Jegasothy, B. V., Linsley, P. S. and Krueger, J. G. (2000) Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J. Exp. Med. 192, 681-694.   DOI
4 Lande, R., Gregorio, J., Facchinetti, V., Chatterjee, B., Wang, Y. H., Homey, B., Cao, W., Wang, Y. H., Su, B., Nestle, F. O., Zal, T., Mellman, I., Schroder, J. M., Liu, Y. J. and Gilliet, M. (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564-569.   DOI   ScienceOn
5 Chu, C. C., Di Meglio, P. and Nestle, F. O. (2011) Harnessing dendritic cells in inflammatory skin diseases. Semin. Immunol. 23, 28-41.
6 Zaba, L. C., Fuentes-Duculan, J., Eungdamrong, N. J., Abello, M. V., Novitskaya, I., Pierson, K. C., Gonzalez, J., Krueger, J. G. and Lowes, M. A. (2009) Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J. Invest. Dermatol. 129, 79-88.   DOI   ScienceOn
7 Nickoloff, B. J., Karabin, G. D., Barker, J. N., Griffiths, C. E., Sarma, V., Mitra, R. S., Elder, J. T., Kunkel, S. L. and Dixit, V. M. (1991) Cellular localization of interleukin-8 and its inducer, tumor necrosis factor-alpha in psoriasis. Am. J. Pathol. 138, 129-140.
8 Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. and Pamer, E. G. (2003) TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59-70.   DOI   ScienceOn
9 Zheng, Y., Danilenko, D. M., Valdez, P., Kasman, I., Eastham-Anderson, J., Wu, J. and Ouyang, W. (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648-651.   DOI   ScienceOn
10 Nograles, K. E. and Krueger, J. G. (2011) Anti-cytokine therapies for psoriasis. Exp. Cell Res. 317, 1293-1300.   DOI   ScienceOn
11 Annunziato, F., Cosmi, L., Santarlasci, V., Maggi, L., Liotta, F., Mazzinghi, B., Parente, E., Fili, L., Ferri, S., Frosali, F., Giudici, F., Romagnani, P., Parronchi, P., Tonelli, F., Maggi, E. and Romagnani, S. (2007) Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204, 1849-1861.   DOI   ScienceOn
12 Chan, J. R., Blumenschein, W., Murphy, E., Diveu, C., Wiekowski, M., Abbondanzo, S., Lucian, L., Geissler, R., Brodie, S., Kimball, A. B., Gorman, D. M., Smith, K., de Waal Malefyt, R., Kastelein, R. A., McClanahan, T. K. and Bowman, E. P. (2006) IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J. Exp. Med. 203, 2577-2587.   DOI   ScienceOn
13 Yawalkar, N., Tscharner, G. G., Hunger, R. E. and Hassan, A. S. (2009) Increased expression of IL-12p70 and IL-23 by multiple dendritic cell and macrophage subsets in plaque psoriasis. J. Dermatol. Sci. 54, 99-105.   DOI   ScienceOn
14 Papp, K. A., Langley, R. G., Lebwohl, M., Krueger, G. G., Szapary, P., Yeilding, N., Guzzo, C., Hsu, M. C., Wang, Y., Li, S., Dooley, L. T., Reich, K. and investigators, P. s. (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371, 1675-1684.   DOI   ScienceOn
15 Fujita, H., Shemer, A., Suarez-Farinas, M., Johnson- Huang, L. M., Tintle, S., Cardinale, I., Fuentes-Duculan, J., Novitskaya, I., Carucci, J. A., Krueger, J. G. and Guttman-Yassky, E. (2011) Lesional dendritic cells in patients with chronic atopic dermatitis and psoriasis exhibit parallel ability to activate T-cell subsets. J. Allergy Clin. Immunol. 128, 574-582 e512.   DOI   ScienceOn
16 Reich, K., Yasothan, U. and Kirkpatrick, P. (2009) Ustekinumab. Nat. Rev. Drug. Discov. 8, 355-356.   DOI   ScienceOn
17 Leonardi, C. L., Kimball, A. B., Papp, K. A., Yeilding, N., Guzzo, C., Wang, Y., Li, S., Dooley, L. T. and Gordon, K. B. (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double- blind, placebo-controlled trial (PHOENIX 1). Lancet 371, 1665-1674.   DOI   ScienceOn
18 Kim, I. H., West, C. E., Kwatra, S. G., Feldman, S. R. and O'Neill, J. L. (2012) Comparative efficacy of biologics in psoriasis: a review. Am. J. Clin. Dermatol. 13, 365-374.   DOI   ScienceOn
19 Hansel, A., Gunther, C., Ingwersen, J., Starke, J., Schmitz, M., Bachmann, M., Meurer, M., Rieber, E. P. and Schakel, K. (2011) Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses. J. Allergy Clin. Immunol. 127, 787-794 e781-789.   DOI   ScienceOn
20 Brunner, P. M., Koszik, F., Reininger, B., Kalb, M. L., Bauer, W. and Stingl, G. (2013) Infliximab induces downregulation of the IL-12/IL-23 axis in 6-sulfo-LacNac (slan)+ dendritic cells and macrophages. J. Allergy Clin. Immunol. 132, 1184-1193 e1188.   DOI   ScienceOn
21 Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., Dalod, M., Grau, V., Hart, D. N., Leenen, P. J., Liu, Y. J., MacPherson, G., Randolph, G. J., Scherberich, J., Schmitz, J., Shortman, K., Sozzani, S., Strobl, H., Zembala, M., Austyn, J. M. and Lutz, M. B. (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116, e74-80.   DOI
22 Cros, J., Cagnard, N., Woollard, K., Patey, N., Zhang, S. Y., Senechal, B., Puel, A., Biswas, S. K., Moshous, D., Picard, C., Jais, J. P., D'Cruz, D., Casanova, J. L., Trouillet, C. and Geissmann, F. (2010) Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33, 375-386.   DOI   ScienceOn
23 Cumberbatch, M., Singh, M., Dearman, R. J., Young, H. S., Kimber, I. and Griffiths, C. E. (2006) Impaired Langerhans cell migration in psoriasis. J. Exp. Med. 203, 953-960.   DOI   ScienceOn
24 Tsai, T. F., Wang, T. S., Hung, S. T., Tsai, P. I., Schenkel, B., Zhang, M. and Tang, C. H. (2011) Epidemiology and comorbidities of psoriasis patients in a national database in Taiwan. J. Dermatol. Sci. 63, 40-46.   DOI   ScienceOn
25 Lowes, M. A., Bowcock, A. M. and Krueger, J. G. (2007) Pathogenesis and therapy of psoriasis. Nature 445, 866-873.   DOI   ScienceOn
26 Christophers, E. (2001) Psoriasis--epidemiology and clinical spectrum. Clin. Exp. Dermatol. 26, 314-320.   DOI   ScienceOn
27 Lew, W., Lee, E. and Krueger, J. G. (2004) Psoriasis genomics: analysis of proinflammatory (type 1) gene expression in large plaque (Western) and small plaque (Asian) psoriasis vulgaris. Br. J. Dermatol. 150, 668-676.   DOI   ScienceOn
28 Kim, N., Thrash, B. and Menter, A. (2010) Comorbidities in psoriasis patients. Semin. Cutan. Med. Surg. 29, 10-15.
29 Davidovici, B. B., Sattar, N., Prinz, J., Puig, L., Emery, P., Barker, J. N., van de Kerkhof, P., Stahle, M., Nestle, F. O., Girolomoni, G. and Krueger, J. G. (2010) Psoriasis and systemic inflammatory diseases: potential mechanistic links between skin disease and co-morbid conditions. J. Invest. Dermatol. 130, 1785-1796.   DOI   ScienceOn
30 Gottlieb, A. B. and Dann, F. (2009) Comorbidities in patients with psoriasis. Am. J. Med. 122, 1150 e1151-1159.
31 Ahmed, A., Leon, A., Butler, D. C. and Reichenberg, J. (2013) Quality-of-life effects of common dermatological diseases. Semin. Cutan. Med. Surg. 32, 101-109.
32 Nestle, F. O., Kaplan, D. H. and Barker, J. (2009) Psoriasis. N. Engl. J. Med. 361, 496-509.   DOI   ScienceOn
33 Martin, D. A., Towne, J. E., Kricorian, G., Klekotka, P., Gudjonsson, J. E., Krueger, J. G. and Russell, C. B. (2013) The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J. Invest. Dermatol. 133, 17-26.   DOI   ScienceOn
34 Lew, W., Bowcock, A. M. and Krueger, J. G. (2004) Psoriasis vulgaris: cutaneous lymphoid tissue supports T-cell activation and "Type 1" inflammatory gene expression. Trends. Immunol. 25, 295-305.   DOI   ScienceOn
35 Biedermann, T., Rocken, M. and Carballido, J. M. (2004) TH1 and TH2 lymphocyte development and regulation of TH cell-mediated immune responses of the skin. J. Investig. Dermatol. Symp. Proc. 9, 5-14.
36 Di Cesare, A., Di Meglio, P. and Nestle, F. O. (2009) The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J. Invest. Dermatol. 129, 1339-1350.   DOI   ScienceOn
37 Lowes, M. A., Kikuchi, T., Fuentes-Duculan, J., Cardinale, I., Zaba, L. C., Haider, A. S., Bowman, E. P. and Krueger, J. G. (2008) Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J. Invest. Dermatol. 128, 1207-1211.   DOI   ScienceOn
38 Miossec, P., Korn, T. and Kuchroo, V. K. (2009) Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 361, 888-898.   DOI   ScienceOn
39 Lee, Y. (2013) The role of interleukin-17 in bone metabolism and inflammatory skeletal diseases. BMB Rep. 46, 479-483.   과학기술학회마을   DOI   ScienceOn
40 Lee, E., Trepicchio, W. L., Oestreicher, J. L., Pittman, D., Wang, F., Chamian, F., Dhodapkar, M. and Krueger, J. G. (2004) Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J. Exp. Med. 199, 125-130.   DOI
41 Chang, E. Y., Hammerberg, C., Fisher, G., Baadsgaard, O., Ellis, C. N., Voorhees, J. J. and Cooper, K. D. (1992) T-cell activation is potentiated by cytokines released by lesional psoriatic, but not normal, epidermis. Arch. Dermatol. 128, 1479-1485.   DOI
42 Leonardi, C., Matheson, R., Zachariae, C., Cameron, G., Li, L., Edson-Heredia, E., Braun, D. and Banerjee, S. (2012) Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 366, 1190-1199.   DOI   ScienceOn
43 Papp, K. A., Leonardi, C., Menter, A., Ortonne, J. P., Krueger, J. G., Kricorian, G., Aras, G., Li, J., Russell, C. B., Thompson, E. H. and Baumgartner, S. (2012) Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med. 366, 1181-1189.   DOI   ScienceOn
44 Lee, M. Y., Shin, M. C. and Yang, V. C. (2013) Transcutaneous antigen delivery system. BMB Rep. 46, 17-24.   과학기술학회마을   DOI   ScienceOn
45 Bos, J. D., Hagenaars, C., Das, P. K., Krieg, S. R., Voorn, W. J. and Kapsenberg, M. L. (1989) Predominance of "memory" T cells (CD4+, CDw29+) over "naive" T cells (CD4+, CD45R+) in both normal and diseased human skin. Arch. Dermatol. Res. 281, 24-30.   DOI
46 Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature 392, 245-252.   DOI   ScienceOn
47 Steinman, R. M. (2012) Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1-22.   DOI   ScienceOn
48 Zaba, L. C., Krueger, J. G. and Lowes, M. A. (2009) Resident and "inflammatory" dendritic cells in human skin. J. Invest. Dermatol. 129, 302-308.   DOI   ScienceOn
49 Breathnach, A. S. and Wyllie, L. M. (1965) Electron Microscopy of Melanocytes and Langerhans Cells in Human Fetal Epidermis at Fourteen Weeks. J. Invest. Dermatol. 44, 51-60.   DOI
50 Collin, M., McGovern, N. and Haniffa, M. (2013) Human dendritic cell subsets. Immunology 140, 22-30.   DOI   ScienceOn
51 Romani, N., Brunner, P. M. and Stingl, G. (2012) Changing views of the role of Langerhans cells. J. Invest. Dermatol. 132, 872-881.   DOI   ScienceOn
52 Hunger, R. E., Sieling, P. A., Ochoa, M. T., Sugaya, M., Burdick, A. E., Rea, T. H., Brennan, P. J., Belisle, J. T., Blauvelt, A., Porcelli, S. A. and Modlin, R. L. (2004) Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J. Clin. Invest. 113, 701-708.   DOI
53 Cerio, R., Griffiths, C. E., Cooper, K. D., Nickoloff, B. J. and Headington, J. T. (1989) Characterization of factor XIIIa positive dermal dendritic cells in normal and inflamed skin. Br. J. Dermatol. 121, 421-431.   DOI   ScienceOn
54 Merad, M., Manz, M. G., Karsunky, H., Wagers, A., Peters, W., Charo, I., Weissman, I. L., Cyster, J. G. and Engleman, E. G. (2002) Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3, 1135-1141.   DOI   ScienceOn
55 Igyarto, B. Z. and Kaplan, D. H. (2010) The evolving function of Langerhans cells in adaptive skin immunity. Immunol. Cell Biol. 88, 361-365.   DOI   ScienceOn
56 Fujita, H., Nograles, K. E., Kikuchi, T., Gonzalez, J., Carucci, J. A. and Krueger, J. G. (2009) Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production. Proc. Natl. Acad. Sci. U. S. A. 106, 21795-21800.   DOI   ScienceOn
57 de Jong, A., Pena-Cruz, V., Cheng, T. Y., Clark, R. A., Van Rhijn, I. and Moody, D. B. (2010) CD1a-autoreactive T cells are a normal component of the human alphabeta T cell repertoire. Nat. Immunol. 11, 1102-1109.   DOI   ScienceOn
58 Seneschal, J., Clark, R. A., Gehad, A., Baecher-Allan, C. M. and Kupper, T. S. (2012) Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36, 873-884.   DOI   ScienceOn
59 Zaba, L. C., Fuentes-Duculan, J., Steinman, R. M., Krueger, J. G. and Lowes, M. A. (2007) Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J. Clin. Invest. 117, 2517-2525.   DOI   ScienceOn
60 Meunier, L., Gonzalez-Ramos, A. and Cooper, K. D. (1993) Heterogeneous populations of class II MHC+ cells in human dermal cell suspensions. Identification of a small subset responsible for potent dermal antigen- presenting cell activity with features analogous to Langerhans cells. J. Immunol. 151, 4067-4080.
61 Morelli, A. E., Rubin, J. P., Erdos, G., Tkacheva, O. A., Mathers, A. R., Zahorchak, A. F., Thomson, A. W., Falo, L. D. Jr. and Larregina, A. T. (2005) CD4+ T cell responses elicited by different subsets of human skin migratory dendritic cells. J. Immunol. 175, 7905-7915.   DOI
62 Mathers, A. R., Janelsins, B. M., Rubin, J. P., Tkacheva, O. A., Shufesky, W. J., Watkins, S. C., Morelli, A. E. and Larregina, A. T. (2009) Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses. J. Immunol. 182, 921-933.   DOI
63 MacDonald, K. P., Munster, D. J., Clark, G. J., Dzionek, A., Schmitz, J. and Hart, D. N. (2002) Characterization of human blood dendritic cell subsets. Blood 100, 4512-4520.   DOI   ScienceOn
64 Furio, L., Briotet, I., Journeaux, A., Billard, H. and Peguet-Navarro, J. (2010) Human langerhans cells are more efficient than CD14(-)CD1c(+) dermal dendritic cells at priming naive CD4(+) T cells. J. Invest. Dermatol. 130, 1345-1354.   DOI   ScienceOn
65 Penel-Sotirakis, K., Simonazzi, E., Peguet-Navarro, J. and Rozieres, A. (2012) Differential capacity of human skin dendritic cells to polarize CD4+ T cells into IL-17, IL-21 and IL-22 producing cells. PLoS One 7, e45680.   DOI
66 Dorner, B. G., Dorner, M. B., Zhou, X., Opitz, C., Mora, A., Guttler, S., Hutloff, A., Mages, H. W., Ranke, K., Schaefer, M., Jack, R. S., Henn, V. and Kroczek, R. A. (2009) Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31, 823-833.   DOI   ScienceOn
67 Haniffa, M., Shin, A., Bigley, V., McGovern, N., Teo, P., See, P., Wasan, P. S., Wang, X. N., Malinarich, F., Malleret, B., Larbi, A., Tan, P., Zhao, H., Poidinger, M., Pagan, S., Cookson, S., Dickinson, R., Dimmick, I., Jarrett, R. F., Renia, L., Tam, J., Song, C., Connolly, J., Chan, J. K., Gehring, A., Bertoletti, A., Collin, M. and Ginhoux, F. (2012) Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37, 60-73.   DOI
68 Bachem, A., Guttler, S., Hartung, E., Ebstein, F., Schaefer, M., Tannert, A., Salama, A., Movassaghi, K., Opitz, C., Mages, H. W., Henn, V., Kloetzel, P. M., Gurka, S. and Kroczek, R. A. (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 207, 1273-1281.   DOI   ScienceOn
69 Crozat, K., Guiton, R., Contreras, V., Feuillet, V., Dutertre, C. A., Ventre, E., Vu Manh, T. P., Baranek, T., Storset, A. K., Marvel, J., Boudinot, P., Hosmalin, A., Schwartz-Cornil, I. and Dalod, M. (2010) The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J. Exp. Med. 207, 1283-1292.   DOI   ScienceOn
70 Jongbloed, S. L., Kassianos, A. J., McDonald, K. J., Clark, G. J., Ju, X., Angel, C. E., Chen, C. J., Dunbar, P. R., Wadley, R. B., Jeet, V., Vulink, A. J., Hart, D. N. and Radford, K. J. (2010) Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207, 1247-1260.   DOI   ScienceOn
71 Matta, B. M., Castellaneta, A. and Thomson, A. W. (2010) Tolerogenic plasmacytoid DC. Eur. J. Immunol. 40, 2667-2676.   DOI   ScienceOn
72 Sancho, D., Joffre, O. P., Keller, A. M., Rogers, N. C., Martinez, D., Hernanz-Falcon, P., Rosewell, I. and Reis e Sousa, C. (2009) Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899-903.   DOI   ScienceOn
73 Reizis, B., Bunin, A., Ghosh, H. S., Lewis, K. L. and Sisirak, V. (2011) Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. 29, 163-183.   DOI   ScienceOn
74 Siegal, F. P., Kadowaki, N., Shodell, M., Fitzgerald- Bocarsly, P. A., Shah, K., Ho, S., Antonenko, S. and Liu, Y. J. (1999) The nature of the principal type 1 interferon- producing cells in human blood. Science 284, 1835-1837.   DOI   ScienceOn
75 Nograles, K. E., Davidovici, B. and Krueger, J. G. (2010) New insights in the immunologic basis of psoriasis. Semin. Cutan. Med. Surg. 29, 3-9.
76 Ebner, S., Ehammer, Z., Holzmann, S., Schwingshackl, P., Forstner, M., Stoitzner, P., Huemer, G. M., Fritsch, P. and Romani, N. (2004) Expression of C-type lectin receptors by subsets of dendritic cells in human skin. Int. Immunol. 16, 877-887.   DOI   ScienceOn
77 Zaba, L. C., Cardinale, I., Gilleaudeau, P., Sullivan- Whalen, M., Suarez-Farinas, M., Fuentes-Duculan, J., Novitskaya, I., Khatcherian, A., Bluth, M. J., Lowes, M. A. and Krueger, J. G. (2007) Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 204, 3183-3194.   DOI   ScienceOn
78 Carragher, D. M., Rangel-Moreno, J. and Randall, T. D. (2008) Ectopic lymphoid tissues and local immunity. Semin. Immunol. 20, 26-42.
79 Guttman-Yassky, E., Nograles, K. E. and Krueger, J. G. (2011) Contrasting pathogenesis of atopic dermatitis and psoriasis--part II: immune cell subsets and therapeutic concepts. J. Allergy Clin. Immunol. 127, 1420-1432.   DOI   ScienceOn
80 Morganroth, G. S., Chan, L. S., Weinstein, G. D., Voorhees, J. J. and Cooper, K. D. (1991) Proliferating cells in psoriatic dermis are comprised primarily of T cells, endothelial cells, and factor XIIIa+ perivascular dendritic cells. J. Invest. Dermatol. 96, 333-340.   DOI   ScienceOn
81 Chamian, F., Lowes, M. A., Lin, S. L., Lee, E., Kikuchi, T., Gilleaudeau, P., Sullivan-Whalen, M., Cardinale, I., Khatcherian, A., Novitskaya, I., Wittkowski, K. M. and Krueger, J. G. (2005) Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc. Natl. Acad. Sci. U. S. A. 102, 2075-2080.   DOI   ScienceOn
82 Nestle, F. O., Turka, L. A. and Nickoloff, B. J. (1994) Characterization of dermal dendritic cells in psoriasis. Autostimulation of T lymphocytes and induction of Th1 type cytokines. J. Clin. Invest. 94, 202-209.   DOI   ScienceOn
83 Miller, G. T., Hochman, P. S., Meier, W., Tizard, R., Bixler, S. A., Rosa, M. D. and Wallner, B. P. (1993) Specific interaction of lymphocyte function-associated antigen 3 with CD2 can inhibit T cell responses. J. Exp. Med. 178, 211-222.   DOI
84 Ellis, C. N. and Krueger, G. G. (2001) Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N. Engl. J. Med. 345, 248-255.   DOI   ScienceOn
85 Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. and Dustin, M. L. (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221-227.   DOI   ScienceOn
86 Homey, B. and Meller, S. (2008) Chemokines and other mediators as therapeutic targets in psoriasis vulgaris. Clin. Dermatol. 26, 539-545.   DOI   ScienceOn
87 Lebwohl, M., Tyring, S. K., Hamilton, T. K., Toth, D., Glazer, S., Tawfik, N. H., Walicke, P., Dummer, W., Wang, X., Garovoy, M. R. and Pariser, D. (2003) A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N. Engl. J. Med. 349, 2004-2013.   DOI   ScienceOn
88 Nickoloff, B. J., Xin, H., Nestle, F. O. and Qin, J. Z. (2007) The cytokine and chemokine network in psoriasis. Clin. Dermatol. 25, 568-573.   DOI   ScienceOn
89 Ganguly, D., Chamilos, G., Lande, R., Gregorio, J., Meller, S., Facchinetti, V., Homey, B., Barrat, F. J., Zal, T. and Gilliet, M. (2009) Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med. 206, 1983-1994.   DOI   ScienceOn
90 Mitsui, H., Suarez-Farinas, M., Belkin, D. A., Levenkova, N., Fuentes-Duculan, J., Coats, I., Fujita, H. and Krueger, J. G. (2012) Combined use of laser capture microdissection and cDNA microarray analysis identifies locally expressed disease-related genes in focal regions of psoriasis vulgaris skin lesions. J. Invest. Dermatol. 132, 1615-1626.   DOI   ScienceOn
91 Kim, T. G., Jee, H., Fuentes-Duculan, J., Wu, W. H., Byamba, D., Kim, D. S., Kim, D. Y., Lew, D. H., Yang, W. I., Krueger, J. G. and Lee, M. G. (2013) Dermal Clusters of Mature Dendritic Cells and T Cells Are Associated with the CCL20/CCR6 Chemokine System in Chronic Psoriasis. J. Invest. Dermatol. 10.1038/jid.2013.534.   DOI   ScienceOn
92 Valladeau, J., Ravel, O., Dezutter-Dambuyant, C., Moore, K., Kleijmeer, M., Liu, Y., Duvert-Frances, V., Vincent, C., Schmitt, D., Davoust, J., Caux, C., Lebecque, S. and Saeland, S. (2000) Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12, 71-81.   DOI   ScienceOn
93 Ghoreschi, K., Weigert, C. and Rocken, M. (2007) Immunopathogenesis and role of T cells in psoriasis. Clin. Dermatol. 25, 574-580.   DOI   ScienceOn
94 Weaver, C. T., Elson, C. O., Fouser, L. A. and Kolls, J. K. (2013) The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu. Rev. Pathol. 8, 477-512.   DOI   ScienceOn
95 Johnson-Huang, L. M., McNutt, N. S., Krueger, J. G. and Lowes, M. A. (2009) Cytokine-producing dendritic cells in the pathogenesis of inflammatory skin diseases. J. Clin. Immunol. 29, 247-256.   DOI
96 Shortman, K. and Heath, W. R. (2010) The CD8+ dendritic cell subset. Immunol. Rev. 234, 18-31.   DOI   ScienceOn
97 Zaba, L. C., Fuentes-Duculan, J., Eungdamrong, N. J., Johnson-Huang, L. M., Nograles, K. E., White, T. R., Pierson, K. C., Lentini, T., Suarez-Farinas, M., Lowes, M. A. and Krueger, J. G. (2010) Identification of TNF-related apoptosis-inducing ligand and other molecules that distinguish inflammatory from resident dendritic cells in patients with psoriasis. J. Allergy Clin. Immunol. 125, 1261-1268 e1269.   DOI   ScienceOn
98 Lowes, M. A., Chamian, F., Abello, M. V., Fuentes-Duculan, J., Lin, S. L., Nussbaum, R., Novitskaya, I., Carbonaro, H., Cardinale, I., Kikuchi, T., Gilleaudeau, P., Sullivan-Whalen, M., Wittkowski, K. M., Papp, K., Garovoy, M., Dummer, W., Steinman, R. M. and Krueger, J. G. (2005) Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc. Natl. Acad. Sci. U. S. A. 102, 19057-19062.   DOI   ScienceOn
99 Sallusto, F., Mackay, C. R. and Lanzavecchia, A. (2000) The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593-620.   DOI   ScienceOn
100 Leonardi, C. L., Powers, J. L., Matheson, R. T., Goffe, B. S., Zitnik, R., Wang, A., Gottlieb, A. B. and Etanercept Psoriasis Study, G. (2003) Etanercept as monotherapy in patients with psoriasis. N. Engl. J. Med. 349, 2014-2022.   DOI   ScienceOn
101 Shaw, F. L., Cumberbatch, M., Kleyn, C. E., Begum, R., Dearman, R. J., Kimber, I. and Griffiths, C. E. (2010) Langerhans cell mobilization distinguishes between early-onset and late-onset psoriasis. J. Invest. Dermatol. 130, 1940-1942.   DOI   ScienceOn
102 Corcoran, L., Ferrero, I., Vremec, D., Lucas, K., Waithman, J., O'Keeffe, M., Wu, L., Wilson, A. and Shortman, K. (2003) The lymphoid past of mouse plasmacytoid cells and thymic dendritic cells. J. Immunol. 170, 4926-4932.   DOI
103 Nestle, F. O., Conrad, C., Tun-Kyi, A., Homey, B., Gombert, M., Boyman, O., Burg, G., Liu, Y. J. and Gilliet, M. (2005) Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J. Exp. Med. 202, 135-143.   DOI   ScienceOn