Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.11.091

Alterations in hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) expression in the hippocampus following pilocarpine-induced status epilepticus  

Oh, Yun-Jung (Department of Anatomy, College of Medicine, Soonchunhyang University)
Na, Jongju (Department of Anatomy, College of Medicine, Soonchunhyang University)
Jeong, Ji-Heon (Department of Anatomy, College of Medicine, Soonchunhyang University)
Park, Dae-Kyoon (Department of Anatomy, College of Medicine, Soonchunhyang University)
Park, Kyung-Ho (Department of Anatomy, College of Medicine, Soonchunhyang University)
Ko, Jeong-Sik (Department of Anatomy, College of Medicine, Soonchunhyang University)
Kim, Duk-Soo (Department of Anatomy, College of Medicine, Soonchunhyang University)
Publication Information
BMB Reports / v.45, no.11, 2012 , pp. 635-640 More about this Journal
Abstract
To understand the effects of HCN as potential mediators in the pathogenesis of epilepsy that evoke long-term impaired excitability; the present study was designed to elucidate whether the alterations of HCN expression induced by status epilepticus (SE) is responsible for epileptogenesis. Although HCN1 immunoreactivity was observed in the hippocampus, its immunoreactivities were enhanced at 12 hrs following SE. Although, HCN1 immunoreactivities were reduced in all the hippocampi at 2 weeks, a re-increase in the expression at 2-3 months following SE was observed. In contrast to HCN1, HCN 4 expressions were un-changed, although HCN2 immunoreactive neurons exhibited some changes following SE. Taken together, our findings suggest that altered expressions of HCN1 following SE may be mainly involved in the imbalances of neurotransmissions to hippocampal circuits; thus, it is proposed that HCN1 may play an important role in the epileptogenic period as a compensatory response.
Keywords
Epilepsy; HCN channels; Hippocampus; Immunohistochemistry; Status epilepticus;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Dalby, N. O. and Mody, I. (2001) The process of epileptogenesis; a pathophysiological approach. Curr. Opin. Neurol. 14, 187-192.   DOI   ScienceOn
2 Margerison, J. H. and Corsellis, J. A. (1966) Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 89, 499-530.   DOI   ScienceOn
3 De Lanerolle, N. C., Kim, J. H., Robbins, R. J. and Spencer, D. D. (1989) Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res. 495, 389-395.
4 Mathern, G. W., Babb, T. L., Pretorius, J. K., Melendez, M. and Levesque, M. F. (1995) The pathophysiologic relationships between lesion pathology, intracranial ictal EEG onsets, and hippocampal neuron losses in temporal lobe epilepsy. Epilepsy Res. 21, 133-147.   DOI   ScienceOn
5 Wittner, L., Magloczky, Z., Borhegyi, Z., Halasz, P., Toth, S., Eross, L., Szabo, Z. and Freund, T.T. (2001) Preservation of perisomatic inhibitory input of granule cells in the pileptic human dentate gyrus. Neuroscience 108, 587-600.   DOI   ScienceOn
6 DiFrancesco, D. (1993) Pacemaker mechanisms in cardiac tissue. Annu. Rev. Physiol. 55, 455-472.   DOI   ScienceOn
7 Pape, H. C. (1996) Queer current and pacemaker: the hyperpolarization- activated cation current in neurons. Annu. Rev. Physiol. 58, 299-327.   DOI   ScienceOn
8 Maccaferri, G., Mangoni, M., Lazzari, A. and DiFrancesco, D. (1993) Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells. J. Neurophysiol. 69, 2129-2136.   DOI
9 Richter, H., Heinemann, U. and Eder, C. (2000) Hyperpolarization-activated cation currents in stellate and pyramidal neurons of rat entorhinal cortex. Neurosci. Lett. 281, 33-36.   DOI   ScienceOn
10 Dickson, C. T., Magistretti, J., Shalinsky, M. H., Fransen, E., Hasselmo, M. E. and Alonso, A. (2000) Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J. Neurophysiol. 83, 2562-2579.   DOI
11 Williams, S. R. and Stuart, G. J. (2000) Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. J. Neurophysiol. 83, 3177-3182.   DOI
12 Chen, K., Aradi, I., Thon, N., Eghbal-Ahmadi, M., Baram, T. Z. and Soltesz, I. (2001) Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat. Med. 7, 331-337.   DOI   ScienceOn
13 Bender, R. A., Soleymani, S. V., Brewster, A. L., Nguyen, S. T., Beck, H., Mathern, G. W. and Baram, T. Z. (2003) Enhanced expression of a specific hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) in surviving dentate gyrus granule cells of human and experimental epileptic hippocampus. J. Neurosci. 23, 6826-6836.
14 Walker, M. C. and Kullmann, D. M. (1999) Febrile convulsions; a 'benign' condition?. Nat. Med. 5, 871-872.   DOI   ScienceOn
15 Chen, K., Baram, T. Z. and Soltesz, I. (1999) Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat. Med. 5, 888-894.   DOI   ScienceOn
16 Lupica, C. R., Bell, J. A., Hoffman, A. F. and Watson, P. L. (2001) Contribution of the hyperpolarization-activated current (Ih) to membrane potential and GABA release in hippocampal interneurons. J. Neurophysiol. 86, 261-268.   DOI
17 Brewster, A., Bender, R. A., Chen, Y., Dube, C., Eghbal- Ahmadi, M. and Baram, T. Z. (2002) Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J. Neurosci. 22, 4591-4599.
18 Santoro, B., Chen, S., Lüthi, A., Pavlidis, P., Shumyatsky, G. P., Tibbs, G. R. and Siegelbaum, S. A. (2000) Molecular and functional heterogeneity of hyperpolarization- activated pacemaker channels in the mouse CNS. J. Neurosci. 20, 5264-5275.
19 Bender, R. A., Brewster, A., Santoro, B., Ludwig, A., Hofmann, F., Biel, M. and Baram, T. Z. (2001) Differential and age-dependent expression of hyperpolarization-activated, cyclic nucleotide-gated cation channel isoforms 1-4 suggests evolving roles in the developing rat hippocampus. Neuroscience 106, 689-698.   DOI   ScienceOn
20 Magee, J. C. (1999) Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2, 508-514.   DOI   ScienceOn
21 Magee, J. C. (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613-7624.
22 Poolos, N. P., Migliore, M. and Johnston, D. (2002) Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat. Neurosci. 5, 767-774.   DOI
23 Okazaki, M. M., Evenson, D. A. and Nadler, J. V. (1995) Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats; visualization after retrograde transport of biocytin. J. Comp. Neurol. 352, 515-534.   DOI   ScienceOn
24 Isokawa, M., Levesque, M., Fried, I. and Engel, J.Jr. (1997) Glutamate currents in morphologically identified human dentate granule cells in temporal lobe epilepsy. J. Neurophysiol. 77, 3355-3369.   DOI
25 Wenzel, H. J., Woolley, C. S., Robbins, C. A. and Schwartzkroin, P. A. (2000) Kainic acid-induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats. Hippocampus. 10, 244-260.   DOI
26 Buckmaster, P. S., Zhang, G. F. and Yamawaki, R. (2002b) Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J. Neurosci. 22, 6650-6658.
27 Buckmaster, P. S., Yamawaki, R. and Zhang, G. F. (2002a) Axon arbors and symaptic connections of a vulnerable population of interneurons in the dentate gyrus in vivo. J. Comp. Neurol. 445, 360-373.   DOI   ScienceOn
28 Moosmang, S., Biel, M., Hofmann, F. and Ludwig, A. (1999) Differential distribution of four hyperpolarizationactivated cation channels in mouse brains. J. Biol. Chem. 380, 975-980.
29 Ludwig, A., Budde, T., Stieber, J., Moosmang, S., Wahl, C., Holthoff, K., Langebartels, A., Wotjak, C., Munsch, T., Zong, X., Feil, S., Feil, R., Lancel, M., Chien, K. R., Konnerth, A., Pape, H. C., Biel, M. and Hofmann, F. (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J. 22, 216-224.   DOI   ScienceOn
30 Kim, D. S., Kim, J. E., Kwak, S. E., Won, M. H. and Kang, T. C. (2007) Seizure activity affects neuroglial Kv1 channel immunoreactivities in the gerbil hippocampus. Brain Res. 1151, 17-187.
31 Kim, D. S., Kim, J. E., Kwak, S. E., Choi, K. C., Kim, D. W., Kwon, O. S., Choi, S. Y. and Kang, T. C. (2008) Spatiotemoral characteristics of astroglial death in the rat hippocampo-entorhinal complex following pilocarpine-induced status epilepticus. J. Comp. Neurol. 511, 581-598.   DOI   ScienceOn
32 Lee, S. B., Oh, Y. J., Chung, J. K., Jeong, J. H., Lee, S. D., Park, D. K., Park, K. H., Ko, J. S. and Kim, D. S. (2011) Altered PLCbeta-1 expression in the gerbil hippocampal complex following spontaneous seizure. BMB Rep. 44, 566-571.   과학기술학회마을   DOI   ScienceOn
33 An, S. J. and Kim, D. S. (2011) Alterations in serotonin receptors and transporter immunoreactivities in the hippocampus in the rat unilateral hypoxic-induced epilepsy model. Cell Mol. Neurobiol. 31, 1245-1255.   DOI   ScienceOn
34 Park, D. K., Park, K. H., Ko, J. S. and Kim, D. S. (2011) Alteration in NCX-3 immunoreactivity within the gerbil hippocampus following spontaneous seizure. BMB Rep. 44, 306-311.   과학기술학회마을   DOI   ScienceOn