Browse > Article

Multiple roles of phosphoinositide-specific phospholipase C isozymes  

Suh, Pann-Ghill (Division of Molecular and Life Sciences, Pohang University of Science and Technology)
Park, Jae-Il (Division of Molecular and Life Sciences, Pohang University of Science and Technology)
Manzoli, Lucia (Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna)
Cocco, Lucio (Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna)
Peak, Joanna C. (Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research)
Katan, Matilda (Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research)
Fukami, Kiyoko (Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Science)
Kataoka, Tohru (Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine)
Yun, Sang-Uk (Division of Molecular and Life Sciences, Pohang University of Science and Technology)
Ryu, Sung-Ho (Division of Molecular and Life Sciences, Pohang University of Science and Technology)
Publication Information
BMB Reports / v.41, no.6, 2008 , pp. 415-434 More about this Journal
Phosphoinositide-specific phospholipase C is an effector molecule in the signal transduction process. It generates two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate. Currently, thirteen mammal PLC isozymes have been identified, and they are divided into six groups: PLC-$\beta$, -$\gamma$, -$\delta$, -$\varepsilon$, -$\zeta$ and -$\eta$. Sequence analysis studies demonstrated that each isozyme has more than one alternative splicing variant. PLC isozymes contain the X and Y domains that are responsible for catalytic activity. Several other domains including the PH domain, the C2 domain and EF hand motifs are involved in various biological functions of PLC isozymes as signaling proteins. The distribution of PLC isozymes is tissue and organ specific. Recent studies on isolated cells and knockout mice depleted of PLC isozymes have revealed their distinct phenotypes. Given the specificity in distribution and cellular localization, it is clear that each PLC isozyme bears a unique function in the modulation of physiological responses. In this review, we discuss the structural organization, enzymatic properties and molecular diversity of PLC splicing variants and study functional and physiological roles of each isozyme.
Alternative splicing variant; Phosphoinositide-specific phospholipase C; Signal transduction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 122  (Related Records In Web of Science)
연도 인용수 순위
1 Yu, P., Constien, R., Dear, N., Katan, M., Hanke, P., Bunney, T. D., Kunder, S., Quintanilla-Martinez, L., Huffstadt, U., Schroder, A., Jones, N. P., Peters, T., Fuchs, H., de Angelis, M. H., Nehls, M., Grosse, J., Wabnitz, P., Meyer, T. P., Yasuda, K., Schiemann, M., Schneider-Fresenius, C., Jagla, W., Russ, A., Popp, A., Josephs, M., Marquardt, A., Laufs, J., Schmittwolf, C., Wagner, H., Pfeffer, K. and Mudde, G. C. (2005) Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase C gamma 2 that specifically increases external $Ca^{2+}$ entry. Immunity 22, 451-465.   DOI   ScienceOn
2 Ji, Q. S., Winnier, G. E., Niswender, K. D., Horstman, D., Wisdom, R., Magnuson, M. A. and Carpenter, G. (1997) Essential role of the tyrosine kinase substrate phospholipase C-gamma1 in mammalian growth and development. Proc. Natl. Acad. Sci. U. S. A. 94, 2999-3003.   DOI   ScienceOn
3 Smith, M. R., Liu, Y. L., Kim, H., Rhee, S. G. and Kung, H. F. (1990) Inhibition of serum- and ras-stimulated DNA synthesis by antibodies to phospholipase C. Science 247, 1074-1077.   DOI
4 Wang, Z., Gluck, S., Zhang, L. and Moran, M. F. (1998) Requirement for phospholipase C-gamma1 enzymatic activity in growth factor-induced mitogenesis. Mol. Cell. Biol. 18, 590-597.   DOI
5 Mohammadi, M., Dionne, C. A., Li, W., Li, N., Spivak, T., Honegger, A. M., Jaye, M. and Schlessinger, J. (1992) Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 358, 681-684.   DOI   ScienceOn
6 Bai, X. C., Deng, F., Liu, A. L., Zou, Z. P., Wang, Y., Ke, Z. Y., Ji, Q. S. and Luo, S. Q. (2002) Phospholipase C-gamma1 is required for cell survival in oxidative stress by protein kinase C. Biochem. J. 363, 395-401.   DOI
7 Mangat, R., Singal, T., Dhalla, N. S. and Tappia, P. S. (2006) Inhibition of phospholipase C-gamma 1 augments the decrease in cardiomyocyte viability by H2O2. Am. J. Physiol. Heart Circ. Physiol. 291, H854-860.   DOI   ScienceOn
8 Majerus, P. W., Connolly, T. M., Deckmyn, H., Ross, T. S., Bross, T. E., Ishii, H., Bansal, V. S. and Wilson, D. B. (1986) The metabolism of phosphoinositide-derived messenger molecules. Science 234, 1519-1526.   DOI
9 Singer, W. D., Brown, H. A. and Sternweis, P. C. (1997) Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu. Rev. Biochem. 66, 475-509.   DOI   ScienceOn
10 Rhee, S. G. (2001) Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281-312.   DOI   ScienceOn
11 Bar-Sagi, D., Rotin, D., Batzer, A., Mandiyan, V. and Schlessinger, J. (1993) SH3 domains direct cellular localization of signaling molecules. Cell 74, 83-91.   DOI   ScienceOn
12 Dearden-Badet, M. T. and Mouchiroud, G. (2005) Re-distribution of phospholipase C gamma 2 in macrophage precursors is mediated by the actin cytoskeleton under the control of the Src kinases. Cell. Signal. 17, 1560-1571.   DOI   ScienceOn
13 Nojiri, S. and Hoek, J. B. (2000) Suppression of epidermal growth factor-induced phospholipase C activation associated with actin rearrangement in rat hepatocytes in primary culture. Hepatology 32, 947-957.   DOI   ScienceOn
14 Suzuki, K. and Takahashi, K. (2001) Actin filament assembly and actin-myosin contractility are necessary for anchorage- and EGF-dependent activation of phospholipase Cgamma. J. Cell. Physiol. 189, 64-71.   DOI   ScienceOn
15 Regunathan, J., Chen, Y., Kutlesa, S., Dai, X., Bai, L., Wen, R., Wang, D. and Malarkannan, S. (2006) Differential and nonredundant roles of phospholipase Cgamma2 and phospholipase Cgamma1 in the terminal maturation of NK cells. J. Immunol. 177, 5365-5376.   DOI
16 Marshall, A. J., Niiro, H., Yun, T. J. and Clark, E. A. (2000) Regulation of B-cell activation and differentiation by the phosphatidylinositol 3-kinase and phospholipase Cgamma pathway. Immunol. Rev. 176, 30-46.   DOI   ScienceOn
17 Satterthwaite, A. B., Li, Z. and Witte, O. N. (1998) Btk function in B cell development and response. Semin. Immunol. 10, 309-316.   DOI   ScienceOn
18 Haendeler, J., Yin, G., Hojo, Y., Saito, Y., Melaragno, M., Yan, C., Sharma, V. K., Heller, M., Aebersold, R. and Berk, B. C. (2003) GIT1 mediates Src-dependent activation of phospholipase Cgamma by angiotensin II and epidermal growth factor. J. Biol. Chem. 278, 49936-49944.   DOI   ScienceOn
19 Razzini, G., Brancaccio, A., Lemmon, M. A., Guarnieri, S. and Falasca, M. (2000) The role of the pleckstrin homology domain in membrane targeting and activation of phospholipase Cbeta(1). J. Biol. Chem. 275, 14873-14881.   DOI
20 Jones, N. P., Peak, J., Brader, S., Eccles, S. A. and Katan, M. (2005) PLCgamma1 is essential for early events in integrin signalling required for cell motility. J. Cell Sci. 118, 2695-2706.   DOI   ScienceOn
21 Jones, N. P. and Katan, M. (2007) Role of Phospholipase C${\gamma}$1 in Cell Spreading Requires Association with a $\beta$-Pix/ GIT1-Containing Complex, Leading to Activation of Cdc42 and Rac1. Mol. Cell. Biol. 27, 5790-5805.   DOI   ScienceOn
22 Chang, J. S., Seok, H., Kwon, T. K., Min, D. S., Ahn, B. H., Lee, Y. H., Suh, J. W., Kim, J. W., Iwashita, S., Omori, A., Ichinose, S., Numata, O., Seo, J. K., Oh, Y. S. and Suh, P. G. (2002) Interaction of elongation factor- 1alpha and pleckstrin homology domain of phospholipase C-gamma 1 with activating its activity. J. Biol. Chem. 277, 19697-19702.   DOI   ScienceOn
23 Choi, J. H., Bae, S. S., Park, J. B., Ha, S. H., Song, H., Kim, J. H., Cocco, L., Ryu, S. H. and Suh, P. G. (2003) Cbl competitively inhibits epidermal growth factor-induced activation of phospholipase C-gamma1. Mol. Cells 15, 245-255   과학기술학회마을
24 Choi, J. H., Hong, W. P., Yun, S., Kim, H. S., Lee, J. R., Park, J. B., Bae, Y. S., Ryu, S. H. and Suh, P. G. (2005) Grb2 negatively regulates epidermal growth factor-induced phospholipase C-gamma1 activity through the direct interaction with tyrosine-phosphorylated phospholipase C-gamma1. Cell. Signal. 17, 1289-1299.   DOI   ScienceOn
25 Song, M., Kim, M. J., Ha, S., Park, J. B., Ryu, S. H. and Suh, P. G. (2005) Inositol 5'-phosphatase, SHIP1 interacts with phospholipase C-gamma1 and modulates EGF-induced PLC activity. Exp. Mol. Med. 37, 161-168.   DOI   ScienceOn
26 Espagnolle, N., Depoil, D., Zaru, R., Demeur, C., Champagne, E., Guiraud, M. and Valitutti, S. (2007) CD2 and TCR synergize for the activation of phospholipase Cgamma1/calcium pathway at the immunological synap se. Int. Immunol. 19, 239-248.   DOI   ScienceOn
27 Ikuta, S., Edamatsu, H., Li, M., Hu, L. and Kataoka, T. (2008) Crucial role of phospholipase C epsilon in skin inflammation induced by tumor-promoting phorbol ester. Cancer Res. 68, 64-72.   DOI   ScienceOn
28 Yun, S., Hong, W. P., Choi, J. H., Yi, K. S., Chae, S. K., Ryu, S. H. and Suh, P. G. (2008) Phospholipase C-epsilon augments epidermal growth factor-dependent cell growth by inhibiting epidermal growth factor receptor down-regulation. J. Biol. Chem. 283, 341-349.   DOI   ScienceOn
29 Citro, S., Malik, S., Oestreich, E. A., Radeff-Huang, J., Kelley, G. G., Smrcka, A. V. and Brown, J. H. (2007) Phospholipase Cepsilon is a nexus for Rho and Rap-mediated G protein-coupled receptor-induced astrocyte proliferation. Proc. Natl. Acad. Sci. U. S. A. 104, 15543-15548.   DOI   ScienceOn
30 Swann, K., Saunders, C. M., Rogers, N. T. and Lai, F. A. (2006) PLCzeta(zeta): a sperm protein that triggers $Ca^{2+}$ oscillations and egg activation in mammals. Semin. Cell Dev. Biol. 17, 264-273.   DOI   ScienceOn
31 Marrero, M. B., Paxton, W. G., Schieffer, B., Ling, B. N. and Bernstein, K. E. (1996) Angiotensin II signalling events mediated by tyrosine phosphorylation. Cell. Signal. 8, 21-26.   DOI   ScienceOn
32 Venema, V. J., Ju, H., Sun, J., Eaton, D. C., Marrero, M. B. and Venema, R. C. (1998) Bradykinin stimulates the tyrosine phosphorylation and bradykinin B2 receptor association of phospholipase C gamma 1 in vascular endothelial cells. Biochem. Biophys. Res. Commun. 246, 70-75.   DOI   ScienceOn
33 Sozzani, P., Hasan, L., Seguelas, M. H., Caput, D., Ferrara, P., Pipy, B. and Cambon, C. (1998) IL-13 induces tyrosine phosphorylation of phospholipase C gamma-1 following IRS-2 association in human monocytes: relationship with the inhibitory effect of IL-13 on ROI production. Biochem. Biophys. Res. Commun. 244, 665-670.   DOI   ScienceOn
34 Kurosaki, T., Maeda, A., Ishiai, M., Hashimoto, A., Inabe, K. and Takata, M. (2000) Regulation of the phospholipase C-gamma2 pathway in B cells. Immunol. Rev. 176, 19-29.   DOI   ScienceOn
35 Watson, S. P., Auger, J. M., McCarty, O. J. and Pearce, A. C. (2005) GPVI and integrin alphaIIb beta3 signaling in platelets. J. Thromb. Haemost. 3, 1752-1762.   DOI   ScienceOn
36 Wen, R., Jou, S. T., Chen, Y., Hoffmeyer, A. and Wang, D. (2002) Phospholipase C gamma 2 is essential for specific functions of Fc epsilon R and Fc gamma R. J. Immunol. 169, 6743-6752.   DOI
37 Wilde, J. I., and Watson, S. P. (2001) Regulation of phospholipase C gamma isoforms in haematopoietic cells: why one, not the other?. Cell. Signal. 13, 691-701.   DOI   ScienceOn
38 Kouchi, Z., Shikano, T., Nakamura, Y., Shirakawa, H., Fukami, K. and Miyazaki, S. (2005) The role of EF-hand domains and C2 domain in regulation of enzymatic activity of phospholipase Czeta. J. Biol. Chem. 280, 21015-21021.   DOI   ScienceOn
39 Nomikos, M., Blayney, L. M., Larman, M. G., Campbell, K., Rossbach, A., Saunders, C. M., Swann, K. and Lai, F. A. (2005) Role of phospholipase C-zeta domains in $Ca^{2+}$-dependent phosphatidylinositol 4,5-bisphosphate hydrolysis and cytoplasmic $Ca^{2+}$ oscillations. J. Biol. Chem. 280, 31011-31018   DOI   ScienceOn
40 Flesch, F. M., Yu, J. W., Lemmon, M. A. and Burger, K. N. (2005) Membrane activity of the phospholipase C-delta1 pleckstrin homology (PH) domain. Biochem. J. 389, 435-441.   DOI   ScienceOn
41 Stope, M. B., Vom Dorp, F., Szatkowski, D., Bohm, A., Keiper, M., Nolte, J., Oude Weernink, P. A., Rosskopf, D., Evellin, S., Jakobs, K. H. and Schmidt, M. (2004) Rap2B-dependent stimulation of phospholipase C-epsilon by epidermal growth factor receptor mediated by c-Src phosphorylation of RasGRP3. Mol. Cell Biol. 24, 4664-4676.   DOI   ScienceOn
42 Tadano, M., Edamatsu, H., Minamisawa, S., Yokoyama, U., Ishikawa, Y., Suzuki, N., Saito, H., Wu, D., Masago- Toda, M., Yamawaki-Kataoka, Y., Setsu, T., Terashima, T., Maeda, S., Satoh, T. and Kataoka, T. (2005) Congenital semilunar valvulogenesis defect in mice deficient in phospholipase C epsilon. Mol.Cell Biol. 25, 2191-2199.   DOI   ScienceOn
43 Wang, H., Oestreich, E. A., Maekawa, N., Bullard, T. A., Vikstrom, K. L., Dirksen, R. T., Kelley, G. G., Blaxall, B. C. and Smrcka, A. V. (2005) Phospholipase C epsilon modulates beta-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circ. Res. 97, 1305-1313.   DOI   ScienceOn
44 Xie, W., Samoriski, G. M., McLaughlin, J. P., Romoser, V. A., Smrcka, A., Hinkle, P. M., Bidlack, J. M., Gross, R. A., Jiang, H. and Wu, D. (1999) Genetic alteration of phospholipase C beta3 expression modulates behavioral and cellular responses to mu opioids. Proc. Natl. Acad. Sci. U. S. A. 96, 10385-10390.   DOI   ScienceOn
45 Jiang, H., Lyubarsky, A., Dodd, R., Vardi, N., Pugh, E., Baylor, D., Simon, M. I. and Wu, D. (1996) Phospholipase C beta 4 is involved in modulating the visual response in mice. Proc. Natl. Acad. Sci. U. S. A. 93, 14598-14601.   DOI   ScienceOn
46 Katan, M. (1998) Families of phosphoinositide-specific phospholipase C: structure and function. Biochim. Biophys. Acta. 1436, 5-17.   DOI   ScienceOn
47 Katan, M. and Williams, R. L. (1997) Phosphoinositidespecific phospholipase C: structural basis for catalysis and regulatory interactions. Semin. Cell Dev. Biol. 8, 287-296.   DOI   ScienceOn
48 Carpenter, G. and Ji, Q. (1999) Phospholipase C-gamma as a signal-transducing element. Exp. Cell Res. 253, 15-24.   DOI   ScienceOn
49 Kamat, A. and Carpenter, G. (1997) Phospholipase C-gamma1: regulation of enzyme function and role in growth factor-dependent signal transduction. Cytokine Growth Factor Rev. 8, 109-117.   DOI   ScienceOn
50 Sekiya, F., Poulin, B., Kim, Y. J. and Rhee, S. G. (2004) Mechanism of tyrosine phosphorylation and activation of phospholipase C-gamma 1. Tyrosine 783 phosphorylation is not sufficient for lipase activation. J. Biol. Chem. 279, 32181-32190.   DOI   ScienceOn
51 Poulin, B., Sekiya, F. and Rhee, S. G. (2005) Intramolecular interaction between phosphorylated tyrosine-783 and the C-terminal Src homology 2 domain activates phospholipase C-gamma1. Proc. Natl. Acad. Sci. U. S. A. 102, 4276-4281.   DOI   ScienceOn
52 Hinkes, B., Wiggins, R. C., Gbadegesin, R., Vlangos, C. N., Seelow, D., Nurnberg, G., Garg, P., Verma, R., Chaib, H., Hoskins, B. E., Ashraf, S., Becker, C., Hennies, H. C., Goyal, M., Wharram, B. L., Schachter, A. D., Mudumana, S., Drummond, I., Kerjaschki, D., Waldherr, R., Dietrich, A., Ozaltin, F., Bakkaloglu, A., Cleper, R., Basel-Vanagaite, L., Pohl, M., Griebel, M., Tsygin, A. N., Soylu, A., Muller, D., Sorli, C. S., Bunney, T. D., Katan, M., Liu, J., Attanasio, M., O'Toole J, F., Hasselbacher, K., Mucha, B., Otto, E. A., Airik, R., Kispert, A., Kelley, G. G., Smrcka, A. V., Gudermann, T., Holzman, L. B., Nurnberg, P. and Hildebrandt, F. (2006) Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat. Genet. 38, 1397-1405.   DOI   ScienceOn
53 Vazquez-Manrique, R. P., Nagy, A. I., Legg, J. C., Bales, O. A., Ly, S. and Baylis, H. A. (2008) Phospholipase C-epsilon regulates epidermal morphogenesis in Caenorhabditis elegans. PLoS Genet. 4, e1000043.   DOI   ScienceOn
54 Bai, Y., Edamatsu, H., Maeda, S., Saito, H., Suzuki, N., Satoh, T. and Kataoka, T. (2004) Crucial role of phospholipase Cepsilon in chemical carcinogen-induced skin tumor development. Cancer Res. 64, 8808-8810.   DOI   ScienceOn
55 Schmidt, M., Evellin, S., Weernink, P. A., von Dorp, F., Rehmann, H., Lomasney, J. W. and Jakobs, K. H. (2001) A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat. Cell Biol. 3, 1020-1024.   DOI   ScienceOn
56 Evellin, S., Nolte, J., Tysack, K., vom Dorp, F., Thiel, M., Weernink, P. A., Jakobs, K. H., Webb, E. J., Lomasney, J. W. and Schmidt, M. (2002) Stimulation of phospholipase C-epsilon by the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B. J. Biol. Chem. 277, 16805-16813.   DOI   ScienceOn
57 Hains, M. D., Wing, M. R., Maddileti, S., Siderovski, D. P. and Harden, T. K. (2006) Galpha12/13- and rho-dependent activation of phospholipase C-epsilon by lysophosphatidic acid and thrombin receptors. Mol. Pharmacol. 69, 2068-2075.   DOI   ScienceOn
58 Follo, M. Y., Finelli, C., Bosi, C., Martinelli, G., Mongiorgi, S., Baccarani, M., Manzoli, L., Blalock, W. L., Martelli, A. M. and Cocco, L. (2008) PI-PLCbeta-1 and activated Akt levels are linked to azacitidine responsiveness in high-risk myelodysplastic syndromes. Leukemia 22, 198-200.   DOI   ScienceOn
59 Cheson, B. D., Greenberg, P. L., Bennett, J. M., Lowenberg, B., Wijermans, P. W., Nimer, S. D., Pinto, A., Beran, M., de Witte, T. M., Stone, R. M., Mittelman, M., Sanz, G. F., Gore, S. D., Schiffer, C. A. and Kantarjian, H. (2006) Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood 108, 419-425.   DOI   ScienceOn
60 Cocco, L., Martelli, A. M., Vitale, M., Falconi, M., Barnabei, O., Stewart Gilmour, R. and Manzoli, F. A. (2002) Inositides in the nucleus: regulation of nuclear PI-PLCbeta1. Adv. Enzyme Regul. 42, 181-193.   DOI   ScienceOn
61 Faenza, I., Matteucci, A., Manzoli, L., Billi, A. M., Aluigi, M., Peruzzi, D., Vitale, M., Castorina, S., Suh, P. G. and Cocco, L. (2000) A role for nuclear phospholipase Cbeta 1 in cell cycle control. J. Biol. Chem. 275, 30520-30524.   DOI   ScienceOn
62 Faenza, I., Ramazzotti, G., Bavelloni, A., Fiume, R., Gaboardi, G. C., Follo, M. Y., Gilmour, R. S., Martelli, A. M., Ravid, K. and Cocco, L. (2007) Inositide-dependent phospholipase C signaling mimics insulin in skeletal muscle differentiation by affecting specific regions of the cyclin D3 promoter. Endocrinology 148, 1108-1117.   DOI   ScienceOn
63 Kim, D., Jun, K. S., Lee, S. B., Kang, N. G., Min, D. S., Kim, Y. H., Ryu, S. H., Suh, P. G. and Shin, H. S. (1997) Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389, 290-293.   DOI   ScienceOn
64 Jiang, H., Kuang, Y., Wu, Y., Xie, W., Simon, M. I. and Wu, D. (1997) Roles of phospholipase C beta2 in chemoattractant- elicited responses. Proc. Natl. Acad. Sci. U. S. A. 94, 7971-7975.   DOI   ScienceOn
65 Kelley, G. G., Kaproth-Joslin, K. A., Reks, S. E., Smrcka, A. V. and Wojcikiewicz, R. J. (2006) G-protein-coupled receptor agonists activate endogenous phospholipase Cepsilon and phospholipase Cbeta3 in a temporally distinct manner. J. Biol. Chem. 281, 2639-2648.   DOI   ScienceOn
66 Seifert, J. P., Wing, M. R., Snyder, J. T., Gershburg, S., Sondek, J. and Harden, T. K. (2004) RhoA activates purified phospholipase C-epsilon by a guanine nucleotide-dependent mechanism. J. Biol. Chem. 279, 47992-47997.   DOI   ScienceOn
67 Yun, S., Moller, A., Chae, S. K., Hong, W. P., Bae, Y. J., Bowtell, D. D., Ryu, S. H. and Suh, P. G. (2008) Siah proteins induce the epidermal growth factor-dependent degradation of phospholipase Cepsilon. J. Biol. Chem. 283, 1034-1042.   DOI   ScienceOn
68 Song, C., Satoh, T., Edamatsu, H., Wu, D., Tadano, M., Gao, X. and Kataoka, T. (2002) Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase C epsilon. Oncogene 21, 8105-8113.   DOI   ScienceOn
69 Stallings, J. D., Zeng, Y. X., Narvaez, F. and Rebecchi, M. J. (2008) Phospholipase C-delta 1is linked to proliferation, DNA synthesis and cyclin E levels. J. Biol. Chem. 283, 13992-14001.   DOI   ScienceOn
70 Zhao, K., Wang, W., Rando, O. J., Xue, Y., Swiderek, K., Kuo, A. and Crabtree, G. R. (1998) Rapid and phosphoinositol- dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625-636.   DOI   ScienceOn
71 Caprini, M., Gomis, A., Cabedo, H., Planells-Cases, R., Belmonte, C., Viana, F. and Ferrer-Montiel, A. (2003) GAP43 stimulates inositol trisphosphate-mediated calcium release in response to hypotonicity. EMBO J. 22, 3004-3014.   DOI   ScienceOn
72 Fiume, R., Faenza, I., Matteucci, A., Astolfi, A., Vitale, M., Martelli, A. M. and Cocco, L. (2005) Nuclear phospholipase C beta1 (PLCbeta1) affects CD24 expression in murine erythroleukemia cells. J. Biol. Chem. 280, 24221-24226.   DOI   ScienceOn
73 Lo Vasco, V. R., Calabrese, G., Manzoli, L., Palka, G., Spadano, A., Morizio, E., Guanciali-Franchi, P., Fantasia, D. and Cocco, L. (2004) Inositide-specific phospholipase c beta1 gene deletion in the progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 18, 1122-1126.   DOI   ScienceOn
74 Follo, M. Y., Mongiorgi, S., Bosi, C., Cappellini, A., Finelli, C., Chiarini, F., Papa, V., Libra, M., Martinelli, G., Cocco, L. and Martelli, A. M. (2007) The Akt/mammalian target of rapamycin signal transduction pathway is activated in high-risk myelodysplastic syndromes and influences cell survival and proliferation. Cancer Res. 67, 4287-4294.   DOI   ScienceOn
75 Kaminskas, E., Farrell, A., Abraham, S., Baird, A., Hsieh, L. S., Lee, S. L., Leighton, J. K., Patel, H., Rahman, A., Sridhara, R., Wang, Y. C. and Pazdur, R. (2005) Approval summary: azacitidine for treatment of .myelodysplastic syndrome subtypes. Clin. Cancer Res. 11, 3604-3608   DOI   ScienceOn
76 Silverman, L. R., Demakos, E. P., Peterson, B. L., Kornblith, A. B., Holland, J. C., Odchimar-Reissig, R., Stone, R. M., Nelson, D., Powell, B. L., DeCastro, C. M., Ellerton, J., Larson, R. A., Schiffer, C. A. and Holland, J. F. (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol. 20, 2429-2440.   DOI   ScienceOn
77 Daskalakis, M., Nguyen, T. T., Nguyen, C., Guldberg, P., Kohler, G., Wijermans, P., Jones, P. A. and Lubbert, M. (2002) Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2'-deoxycytidine (decitabine) treatment. Blood 100, 2957-2964.   DOI   ScienceOn
78 Shibatohge, M., Kariya, K., Liao, Y., Hu, C. D., Watari, Y., Goshima, M., Shima, F. and Kataoka, T. (1998) Identification of PLC210, a Caenorhabditis elegans phospholipase C, as a putative effector of Ras. J. Biol. Chem. 273, 6218-6222.   DOI   ScienceOn
79 Kelley, G. G., Reks, S. E., Ondrako, J. M. and Smrcka, A. V. (2001) Phospholipase C(epsilon): a novel Ras effector. EMBO J. 20, 743-754.   DOI   ScienceOn
80 Song, C., Hu, C. D., Masago, M., Kariyai, K., Yamawaki- Kataoka, Y., Shibatohge, M., Wu, D., Satoh, T. and Kataoka, T. (2001) Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J. Biol. Chem. 276, 2752-2757.   DOI   ScienceOn
81 Bunney, T. D., Harris, R., Gandarillas, N. L., Josephs, M. B., Roe, S. M., Sorli, S. C., Paterson, H. F., Rodrigues-Lima, F., Esposito, D., Ponting, C. P., Gierschik, P., Pearl, L. H., Driscoll, P. C. and Katan, M. (2006) Structural and mechanistic insights into ras association domains of phospholipase C epsilon. Mol. Cell 21, 495-507.   DOI   ScienceOn
82 Jin, T. G., Satoh, T., Liao, Y., Song, C., Gao, X., Kariya, K., Hu, C. D. and Kataoka, T. (2001) Role of the CDC25 homology domain of phospholipase Cepsilon in amplification of Rap1-dependent signaling. J. Biol. Chem. 276, 30301-30307.   DOI   ScienceOn
83 Fukami, K., Nakao, K., Inoue, T., Kataoka, Y., Kurokawa, M., Fissore, R. A., Nakamura, K., Katsuki, M., Mikoshiba, K., Yoshida, N. and Takenawa, T. (2001) Requirement of phospholipase Cdelta4 for the zona pellucida-induced acrosome reaction. Science 292, 920-923.   DOI   ScienceOn
84 Darszon, A., Beltran, C., Felix, R., Nishigaki, T. and Trevino, C. L. (2001) Ion transport in sperm signaling. Dev. Biol. 240, 1-14.   DOI   ScienceOn
85 Breitbart, H. (2002) Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Mol. Cell Endocrinol. 187, 139-144.   DOI   ScienceOn
86 Cocco, L., Capitani, S., Maraldi, N. M., Mazzotti, G., Barnabei, O., Rizzoli, R., Gilmour, R. S., Wirtz, K. W., Rhee, S. G. and Manzoli, F. A. (1998) Inositides in the nucleus: taking stock of PLC beta 1. Adv. Enzyme Regul. 38, 351-363.   DOI   ScienceOn
87 Martelli, A. M., Gilmour, R. S., Bertagnolo, V., Neri, L. M., Manzoli, L. and Cocco, L. (1992) Nuclear localization and signalling activity of phosphoinositidase C beta in Swiss 3T3 cells. Nature 358, 242-245.   DOI   ScienceOn
88 Divecha, N., Letcher, A. J., Banfic, H. H., Rhee, S. G. and Irvine, R. F. (1995) Changes in the components of a nuclear inositide cycle during differentiation in murine erythroleukaemia cells. Biochem. J. 312(Pt 1), 63-67.   DOI
89 Kim, C. G., Park, D. and Rhee, S. G. (1996) The role of carboxyl-terminal basic amino acids in Gqalpha-dependent activation, particulate association, and nuclear localization of phospholipase C-beta1. J. Biol. Chem. 271, 21187-21192.   DOI   ScienceOn
90 Payrastre, B., Nievers, M., Boonstra, J., Breton, M., Verkleij, A. J. and Van Bergen en Henegouwen, P. M. (1992) A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J. Biol. Chem. 267, 5078-5084.
91 Deleris, P., Bacqueville, D., Gayral, S., Carrez, L., Salles, J. P., Perret, B. and Breton-Douillon, M. (2003) SHIP-2 and PTEN are expressed and active in vascular smooth muscle cell nuclei, but only SHIP-2 is associated with nuclear speckles. J. Biol. Chem. 278, 38884-38891.   DOI   ScienceOn
92 Didichenko, S. A. and Thelen, M. (2001) Phosphatidylinositol 3-kinase c2alpha contains a nuclear localization sequence and associates with nuclear speckles. J. Biol. Chem. 276, 48135-48142.   DOI
93 Fukami, K., Yoshida, M., Inoue, T., Kurokawa, M., Fissore, R. A., Yoshida, N., Mikoshiba, K. and Takenawa, T. (2003) Phospholipase Cdelta4 is required for $Ca^{2+}$ mobilization essential for acrosome reaction in sperm. J. Cell Biol. 161, 79-88.   DOI   ScienceOn
94 Fu, L., Qin, Y. R., Xie, D., Hu, L., Kwong, D. L., Srivastava, G., Tsao, S. W. and Guan, X. Y. (2007) Characterization of a novel tumor-suppressor gene PLC delta 1 at 3p22 in esophageal squamous cell carcinoma. Cancer Res. 67, 10720-10726.   DOI   ScienceOn
95 Yuan, B. Z., Miller, M. J., Keck, C. L., Zimonjic, D. B., Thorgeirsson, S. S. and Popescu, N. C. (1998) Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Res. 58, 2196-2199
96 Yamaga, M., Fujii, M., Kamata, H., Hirata, H. and Yagisawa, H. (1999) Phospholipase C-delta1 contains a functional nuclear export signal sequence. J. Biol. Chem. 274, 28537-28541.   DOI
97 Stallings, J. D., Tall, E. G., Pentyala, S. and Rebecchi, M. J. (2005) Nuclear translocation of phospholipase C-delta1 is linked to the cell cycle and nuclear phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 280, 22060-22069.   DOI   ScienceOn
98 Nakamura, Y., Fukami, K., Yu, H., Takenaka, K., Kataoka, Y., Shirakata, Y., Nishikawa, S., Hashimoto, K., Yoshida, N. and Takenawa, T. (2003) Phospholipase Cdelta1 is required for skin stem cell lineage commitment. EMBO J. 22, 2981-2991.   DOI   ScienceOn
99 Li, M., Chiba, H., Warot, X., Messaddeq, N., Gerard, C., Chambon, P. and Metzger, D. (2001) RXR-alpha ablation in skin keratinocytes results in alopecia and epidermal alterations. Development 128, 675-688.
100 Ichinohe, M., Nakamura, Y., Sai, K., Nakahara, M., Yamaguchi, H. and Fukami, K. (2007) Lack of phospholipase C-delta1 induces skin inflammation. Biochem. Biophys. Res. Commun. 356, 912-918.   DOI   ScienceOn
101 Tabellini, G., Bortul, R., Santi, S., Riccio, M., Baldini, G., Cappellini, A., Billi, A. M., Berezney, R., Ruggeri, A., Cocco, L. and Martelli, A. M. (2003) Diacylglycerol kinase- theta is localized in the speckle domains of the nucleus. Exp. Cell Res. 287, 143-154.   DOI   ScienceOn
102 Lee, C. W., Lee, K. H., Lee, S. B., Park, D. and Rhee, S. G. (1994) Regulation of phospholipase C-beta 4 by ribonucleotides and the alpha subunit of Gq. J. Biol. Chem. 269, 25335-25338.
103 Camps, M., Carozzi, A., Schnabel, P., Scheer, A., Parker, P. J. and Gierschik, P. (1992) Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma- subunits. Nature 360, 684-686.   DOI   ScienceOn
104 Runnels, L. W. and Scarlata, S. F. (1999) Determination of the affinities between heterotrimeric G protein subunits and their phospholipase C-beta effectors. Biochemistry 38, 1488-1496.   DOI   ScienceOn
105 Offermanns, S., Toombs, C. F., Hu, Y. H. and Simon, M. I. (1997) Defective platelet activation in G alpha(q)-deficient mice. Nature 389, 183-186.   DOI   ScienceOn
106 Lee, S. B., Shin, S. H., Hepler, J. R., Gilman, A. G. and Rhee, S. G. (1993) Activation of phospholipase C-beta 2 mutants by G protein alpha q and beta gamma subunits. J. Biol. Chem. 268, 25952-25957.
107 Wang, T., Pentyala, S., Rebecchi, M. J. and Scarlata, S. (1999) Differential association of the pleckstrin homology domains of phospholipases C-beta 1, C-beta 2, and C-delta 1 with lipid bilayers and the beta gamma subunits of heterotrimeric G proteins. Biochemistry 38, 1517-1524.   DOI   ScienceOn
108 Dippel, E., Kalkbrenner, F., Wittig, B. and Schultz, G. (1996) A heterotrimeric G protein complex couples the muscarinic m1 receptor to phospholipase C-beta. Proc. Natl. Acad. Sci. U. S. A. 93, 1391-1396.   DOI   ScienceOn
109 Nakamura, Y., Ichinohe, M., Hirata, M., Matsuura, H., Fujiwara, T., Igarashi, T., Nakahara, M., Yamaguchi, H., Yasugi, S., Takenawa, T. and Fukami, K. (2008) Phospholipase C-delta1 is an essential molecule downstream of Foxn1, the gene responsible for the nude mutation, in normal hair development. FASEB J. 22, 841-849.   DOI   ScienceOn
110 Flanagan, S. P. (1966) 'Nude', a new hairless gene with pleiotropic effects in the mouse. Genet. Res. 8, 295-309.   DOI   ScienceOn
111 Meier, N., Dear, T. N. and Boehm, T. (1999) Whn and mHa3 are components of the genetic hierarchy controlling hair follicle differentiation. Mech. Dev. 89, 215-221.   DOI   ScienceOn
112 Nakamura, Y., Hamada, Y., Fujiwara, T., Enomoto, H., Hiroe, T., Tanaka, S., Nose, M., Nakahara, M., Yoshida, N., Takenawa, T. and Fukami, K. (2005) Phospholipase C-delta1 and -delta3 are essential in the trophoblast for placental development. Mol. Cell Biol. 25, 10979-10988.   DOI   ScienceOn
113 James, R. M., Klerkx, A. H., Keighren, M., Flockhart, J. H. and West, J. D. (1995) Restricted distribution of tetraploid cells in mouse tetraploid<==>diploid chimaeras. Dev. Biol. 167, 213-226.   DOI   ScienceOn
114 Irino, Y., Cho, H., Nakamura, Y., Nakahara, M., Furutani, M., Suh, P. G., Takenawa, T. and Fukami, K. (2004) Phospholipase C delta-type consists of three isozymes: bovine PLCdelta2 is a homologue of human/mouse PLCdelta4. Biochem. Biophys. Res. Commun. 320, 537-543.   DOI   ScienceOn
115 Lemmon, M. A., Falasca, M., Ferguson, K. M. and Schlessinger, J. (1997) Regulatory requirement of signaling melecules to the cell membrane by pleckstrin-homology domains. Trends Cell Biol. 7, 237-242.   DOI   ScienceOn
116 Biddlecome, G. H., Berstein, G. and Ross, E. M. (1996) Regulation of phospholipase C-beta1 by Gq and m1 muscarinic cholinergic receptor. Steady-state balance of receptor- mediated activation and GTPase-activating protein- promoted deactivation. J. Biol. Chem. 271, 7999-8007.   DOI
117 Divecha, N. and Irvine, R. F. (1995) Phospholipid signaling. Cell 80, 269-278.   DOI   ScienceOn
118 Nagano, K., Fukami, K., Minagawa, T., Watanabe, Y., Ozaki, C. and Takenawa, T. (1999) A novel phospholipase C delta4 (PLCdelta4) splice variant as a negative regulator of PLC. J. Biol. Chem. 274, 2872-2879.   DOI   ScienceOn
119 Kouchi, Z., Fukami, K., Shikano, T., Oda, S., Nakamura, Y., Takenawa, T. and Miyazaki, S. (2004) Recombinant phospholipase Czeta has high $Ca^{2+}$ sensitivity and induces $Ca^{2+}$ oscillations in mouse eggs. J. Biol. Chem. 279, 10408-10412.   DOI   ScienceOn
120 Rebecchi, M. J. and Pentyala, S. N. (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80, 1291-1335.   DOI
121 Faenza, I., Bregoli, L., Ramazzotti, G., Gaboardi, G., Follo, M. Y., Mongiorgi, S., Billi, A. M., Manzoli, L., Martelli, A. M. and Cocco, L. (2008) Nuclear phospholipase C beta1 and cellular differentiation. Front. Biosci. 13, 2452-2463.   DOI
122 Drin, G. and Scarlata, S. (2007) Stimulation of phospholipase Cbeta by membrane interactions, interdomain movement, and G protein binding-how many ways can you activate an enzyme? Cell. Signal. 19, 1383-1392.   DOI   ScienceOn
123 Ross, E. M., Mateu, D., Gomes, A. V., Arana, C., Tran, T. and Litosch, I. (2006) Structural determinants for phosphatidic acid regulation of phospholipase C-beta1. J. Biol. Chem. 281, 33087-33094.   DOI
124 Kim, Y. H., Park, T. J., Lee, Y. H., Baek, K. J., Suh, P. G., Ryu, S. H. and Kim, K. T. (1999) Phospholipase C-delta1 is activated by capacitative calcium entry that follows phospholipase C-beta activation upon bradykinin stimulation. J. Biol. Chem. 274, 26127-26134.   DOI
125 Allen, V., Swigart, P., Cheung, R., Cockcroft, S. and Katan, M. (1997) Regulation of inositol lipid-specific phospholipase cdelta by changes in $Ca^{2+}$ ion concentrations. Biochem. J. 327, 545-552.   DOI
126 Feng, J. F., Rhee, S. G. and Im, M. J. (1996) Evidence that phospholipase delta1 is the effector in the Gh (transglutaminase II)-mediated signaling. J. Biol. Chem. 271, 16451-16454.   DOI   ScienceOn
127 Kang, S. K., Kim, D. K., Damron, D. S., Baek, K. J. and Im, M. J. (2002) Modulation of intracellular Ca(2+) via alpha(1B)-adrenoreceptor signaling molecules, G alpha( h) (transglutaminase II) and phospholipase C-delta 1. Biochem. Biophys. Res. Commun. 293, 383-390.   DOI   ScienceOn
128 Homma, Y. and Emori, Y. (1995) A dual functional signal mediator showing RhoGAP and phospholipase C-delta stimulating activities. EMBO J. 14, 286-291.
129 Sekimata, M., Kabuyama, Y., Emori, Y. and Homma, Y. (1999) Morphological changes and detachment of adherent cells induced by p122, a GTPase-activating protein for Rho. J. Biol. Chem. 274, 17757-17762.   DOI
130 Choi, J. H., Yang, Y. R., Lee, S. K., Kim, I. S., Ha, S. H., Kim, E. K., Bae, Y. S., Ryu, S. H. and Suh, P. G. (2007) Phospholipase C-gamma1 potentiates integrin-dependent cell spreading and migration through Pyk2/paxillin activation. Cell. Signal. 19, 1784-1796.   DOI   ScienceOn
131 Kanner, S. B., Grosmaire, L. S., Ledbetter, J. A. and Damle, N. K. (1993) Beta 2-integrin LFA-1 signaling through phospholipase C-gamma 1 activation. Proc. Natl. Acad. Sci. U. S. A. 90, 7099-7103.   DOI   ScienceOn
132 Park, D., Jhon, D. Y., Lee, C. W., Ryu, S. H. and Rhee, S. G. (1993) Removal of the carboxyl-terminal region of phospholipase C-beta 1 by calpain abolishes activation by G alpha q. J. Biol. Chem. 268, 3710-3714.
133 Smrcka, A. V. and Sternweis, P. C. (1993) Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits. J. Biol. Chem. 268, 9667-9674.
134 Nakahara, M., Shimozawa, M., Nakamura, Y., Irino, Y., Morita, M., Kudo, Y. and Fukami, K. (2005) A novel phospholipase C, PLC(eta)2, is a neuron-specific isozyme. J. Biol. Chem. 280, 29128-29134.   DOI   ScienceOn
135 Bahk, Y. Y., Song, H., Baek, S. H., Park, B. Y., Kim, H., Ryu, S. H. and Suh, P. G. (1998) Localization of two forms of phospholipase C-beta1, a and b, in C6Bu-1 cells. Biochim. Biophys. Acta. 1389, 76-80.   DOI   ScienceOn
136 Mao, G. F., Kunapuli, S. P. and Koneti Rao, A. (2000) Evidence for two alternatively spliced forms of phospholipase C-beta2 in haematopoietic cells. Br. J. Haematol. 110, 402-408.   DOI   ScienceOn
137 Kim, M. J., Min, D. S., Ryu, S. H. and Suh, P. G. (1998) A cytosolic, galphaq- and betagamma-insensitive splice variant of phospholipase C-beta4. J. Biol. Chem. 273, 3618-3624.   DOI   ScienceOn
138 Sorli, S. C., Bunney, T. D., Sugden, P. H., Paterson, H. F. and Katan, M. (2005) Signaling properties and expression in normal and tumor tissues of two phospholipase C epsilon splice variants. Oncogene 24, 90-100.   DOI   ScienceOn
139 Peruzzi, D., Aluigi, M., Manzoli, L., Billi, A. M., Di Giorgio, F. P., Morleo, M., Martelli, A. M. and Cocco, L. (2002) Molecular characterization of the human PLC beta1 gene. Biochim. Biophys. Acta. 1584, 46-54.   DOI   ScienceOn
140 Nakamura, I., Lipfert, L., Rodan, G. A. and Le, T. D. (2001) Convergence of alpha(v)beta(3) integrin- and macrophage colony stimulating factor-mediated signals on phospholipase Cgamma in prefusion osteoclasts. J. Cell Biol. 152, 361-373.   DOI
141 Tvorogov, D., Wang, X. J., Zent, R. and Carpenter, G. (2005) Integrin-dependent PLC-gamma1 phosphorylation mediates fibronectin-dependent adhesion. J. Cell Sci. 118, 601-610.   DOI   ScienceOn
142 Inoue, O., Suzuki-Inoue, K., Dean, W. L., Frampton, J. and Watson, S. P. (2003) Integrin alpha2beta1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCgamma2. J. Cell Biol. 160, 769-780.   DOI   ScienceOn
143 Ohmori, T., Yatomi, Y., Wu, Y., Osada, M., Satoh, K. and Ozaki, Y. (2001) Wheat germ agglutinin-induced platelet activation via platelet endothelial cell adhesion molecule-1: involvement of rapid phospholipase C gamma 2 activation by Src family kinases. Biochemistry 40, 12992-13001.   DOI   ScienceOn
144 Wonerow, P., Pearce, A. C., Vaux, D. J. and Watson, S. P. (2003) A critical role for phospholipase Cgamma2 in alphaIIbbeta3-mediated platelet spreading. J. Biol. Chem. 278, 37520-37529.   DOI   ScienceOn
145 Peak, J. C., Jones, N. P., Hobbs, S., Katan, M. and Eccles, S. A. (2008) Phospholipase Cgamma1 regulates the Rap GEF1-Rap1 signalling axis in the control of human prostate carcinoma cell adhesion. Oncogene 27, 2823-2832.   DOI   ScienceOn
146 Smith, M. R., Liu, Y. L., Matthews, N. T., Rhee, S. G., Sung, W. K. and Kung, H. F. (1994) Phospholipase C-gamma 1 can induce DNA synthesis by a mechanism independent of its lipase activity. Proc. Natl. Acad. Sci. U. S. A. 91, 6554-6558.   DOI   ScienceOn
147 Min, D. S., Kim, Y., Lee, Y. H., Suh, P. G. and Ryu, S. H. (1993) A G-protein-coupled 130 kDa phospholipase C isozyme, PLC-beta 4, from the particulate fraction of bovine cerebellum. FEBS Lett. 331, 38-42   DOI   ScienceOn
148 Harada, K., Takeuchi, H., Oike, M., Matsuda, M., Kanematsu, T., Yagisawa, H., Nakayama, K. I., Maeda, K., Erneux, C. and Hirata, M. (2005) Role of PRIP-1, a novel Ins(1,4,5)P3 binding protein, in Ins(1,4,5)P3-mediated $Ca^{2+}$ signaling. J. Cell. Physiol. 202, 422-433.   DOI   ScienceOn
149 Wang, D., Feng, J., Wen, R., Marine, J. C., Sangster, M. Y., Parganas, E., Hoffmeyer, A., Jackson, C. W., Cleveland, J. L., Murray, P. J. and Ihle, J. N. (2000) Phospholipase Cgamma2 is essential in the functions of B cell and several Fc receptors. Immunity 13, 25-35.   DOI   ScienceOn
150 Hashimoto, A., Takeda, K., Inaba, M., Sekimata, M., Kaisho, T., Ikehara, S., Homma, Y., Akira, S. and Kurosaki, T. (2000) Cutting edge: essential role of phospholipase C-gamma 2 in B cell development and function. J. Immunol. 165, 1738-1742.   DOI
151 Lee, W. K., Kim, J. K., Seo, M. S., Cha, J. H., Lee, K. J., Rha, H. K., Min, D. S., Jo, Y. H. and Lee, K. H. (1999) Molecular cloning and expression analysis of a mouse phospholipase C-delta1. Biochem. Biophys. Res. Commun. 261, 393-399.   DOI   ScienceOn
152 Lin, F. G., Cheng, H. F., Lee, I. F., Kao, H. J., Loh, S. H. and Lee, W. H. (2001) Downregulation of phospholipase C delta3 by cAMP and calcium. Biochem. Biophys. Res. Commun. 286, 274-280.   DOI   ScienceOn
153 Lee, S. B. and Rhee, S. G. (1996) Molecular cloning, splice variants, expression, and purification of phospholipase C-delta 4. J. Biol. Chem. 271, 25-31.   DOI
154 Paronetto, M. P., Venables, J. P., Elliott, D. J., Geremia, R., Rossi, P. and Sette, C. (2003) Tr-kit promotes the formation of a multimolecular complex composed by Fyn, PLCgamma1 and Sam68. Oncogene 22, 8707-8715.   DOI
155 Tvorogov, D. and Carpenter, G. (2002) EGF-dependent association of phospholipase C-gamma1 with c-Cbl. Exp. Cell Res. 277, 86-94.   DOI   ScienceOn
156 Kim, M. J., Chang, J. S., Park, S. K., Hwang, J. I., Ryu, S. H. and Suh, P. G. (2000) Direct interaction of SOS1 Ras exchange protein with the SH3 domain of phospholipase C-gamma1. Biochemistry 39, 8674-8682.   DOI   ScienceOn
157 Choi, J. H., Park, J. B., Bae, S. S., Yun, S., Kim, H. S., Hong, W. P., Kim, I. S., Kim, J. H., Han, M. Y., Ryu, S. H., Patterson, R. L., Snyder, S. H. and Suh, P. G. (2004) Phospholipase C-gamma1 is a guanine nucleotide exchange factor for dynamin-1 and enhances dynamin-1-dependent epidermal growth factor receptor endocytosis. J. Cell Sci. 117, 3785-3795.   DOI   ScienceOn
158 Ye, K., Aghdasi, B., Luo, H. R., Moriarity, J. L., Wu, F. Y., Hong, J. J., Hurt, K. J., Bae, S. S., Suh, P. G. and Snyder, S. H. (2002) Phospholipase C gamma 1 is a physiological guanine nucleotide exchange factor for the nuclear GTPase PIKE. Nature 415, 541-544.   DOI   ScienceOn
159 Ye, K. (2005) PIKE/nuclear PI 3-kinase signaling in preventing programmed cell death. J. Cell Biochem. 96, 463-472.   DOI   ScienceOn
160 Ye, K. and Snyder, S. H. (2004) PIKE GTPase: a novel mediator of phosphoinositide signaling. J. Cell Sci. 117, 155-161.   DOI   ScienceOn
161 Kobrinsky, E., Mirshahi, T., Zhang, H., Jin, T. and Logothetis, D. E. (2000) Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+-current desensitization. Nat. Cell Biol. 2, 507-514.   DOI   ScienceOn
162 Lopez, I., Mak, E. C., Ding, J., Hamm, H. E. and Lomasney, J. W. (2001) A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogenactivated protein kinase pathway. J. Biol. Chem. 276, 2758-2765.   DOI   ScienceOn
163 Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K. and Lai, F. A. (2002) PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 129, 3533-3544.
164 Hwang, J. I., Oh, Y. S., Shin, K. J., Kim, H., Ryu, S. H. and Suh, P. G. (2005) Molecular cloning and characterization of a novel phospholipase C, PLC-eta. Biochem. J. 389, 181-186.   DOI   ScienceOn
165 Zhou, Y., Wing, M. R., Sondek, J. and Harden, T. K. (2005) Molecular cloning and characterization of PLC-eta2. Biochem. J. 391, 667-676.   DOI   ScienceOn
166 Sun, L., Mao, G., Kunapuli, S. P., Dhanasekaran, D. N. and Rao, A. K. (2007) Alternative splice variants of phospholipase C-beta2 are expressed in platelets: effect on Galphaq-dependent activation and localization. Platelets. 18, 217-223.   DOI   ScienceOn
167 Jhon, D. Y., Lee, H. H., Park, D., Lee, C. W., Lee, K. H., Yoo, O. J. and Rhee, S. G. (1993) Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-beta 3. J. Biol. Chem. 268, 6654-6661.
168 Adamski, F. M., Timms, K. M. and Shieh, B. H. (1999) A unique isoform of phospholipase Cbeta4 highly expressed in the cerebellum and eye. Biochim. Biophys. Acta. 1444, 55-60.   DOI   ScienceOn
169 Min, D. S., Kim, D. M., Lee, Y. H., Seo, J., Suh, P. G. and Ryu, S. H. (1993) Purification of a novel phospholipase C isozyme from bovine cerebellum. J. Biol. Chem. 268, 12207-12212.
170 Suh, B. C., Inoue, T., Meyer, T. and Hille, B. (2006) Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314, 1454-1457.   DOI   ScienceOn
171 Clapham, D. E. (2003) TRP channels as cellular sensors. Nature 426, 517-524.   DOI   ScienceOn
172 Patterson, R. L., van Rossum, D. B., Ford, D. L., Hurt, K. J., Bae, S. S., Suh, P. G., Kurosaki, T., Snyder, S. H. and Gill, D. L. (2002) Phospholipase C-gamma is required for agonist-induced $Ca^{2+}$ entry. Cell 111, 529-541.   DOI   ScienceOn
173 Hofmann, T., Obukhov, A. G., Schaefer, M., Harteneck, C., Gudermann, T. and Schultz, G. (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259-263.   DOI   ScienceOn
174 Venkatachalam, K., Ma, H. T., Ford, D. L. and Gill, D. L. (2001) Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP3 knockout cells. J. Biol. Chem. 276, 33980-33985.   DOI   ScienceOn
175 van Rossum, D. B., Patterson, R. L., Sharma, S., Barrow, R. K., Kornberg, M., Gill, D. L. and Snyder, S. H. (2005) Phospholipase $C{\gamma}1$ controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434, 99-104.   DOI   ScienceOn
176 Huang, P. S., Davis, L., Huber, H., Goodhart, P. J., Wegrzyn, R. E., Oliff, A. and Heimbrook, D. C. (1995) An SH3 domain is required for the mitogenic activity of microinjected phospholipase C-gamma 1. FEBS Lett. 358, 287-292.   DOI   ScienceOn
177 Lin, H. Y., Xu, J., Ischenko, I., Ornitz, D. M., Halegoua, S. and Hayman, M. J. (1998) Identification of the cytoplasmic regions of fibroblast growth factor (FGF) receptor 1 which play important roles in induction of neurite outgrowth in PC12 cells by FGF-1. Mol. Cell. Biol. 18, 3762-3770.   DOI
178 Alvarez, R. A., Ghalayini, A. J., Xu, P., Hardcastle, A., Bhattacharya, S., Rao, P. N., Pettenati, M. J., Anderson, R. E. and Baehr, W. (1995) cDNA sequence and gene locus of the human retinal phosphoinositide-specific phospholipase-C beta 4 (PLCB4). Genomics 29, 53-61.   DOI   ScienceOn
179 Mizuguchi, M., Yamada, M., Kim, S. U. and Rhee, S. G. (1991) Phospholipase C isozymes in neurons and glial cells in culture: an immunocytochemical and immunochemical study. Brain Res. 548, 35-40.   DOI   ScienceOn
180 Tanaka, O. and Kondo, H. (1994) Localization of mRNAs for three novel members (beta 3, beta 4 and gamma 2) of phospholipase C family in mature rat brain. Neurosci. Lett. 182, 17-20.   DOI   ScienceOn
181 Ji, Q. S., Ermini, S., Baulida, J., Sun, F. L. and Carpenter, G. (1998) Epidermal growth factor signaling and mitogenesis in Plcg1 null mouse embryonic fibroblasts. Mol. Biol. Cell. 9, 749-757.   DOI
182 Paterson, H. F., Savopoulos, J. W., Perisic, O., Cheung, R., Ellis, M. V., Williams, R. L. and Katan, M. (1995) Phospholipase C delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem. J. 312, 661-666.   DOI
183 Wang, T., Dowal, L., El-Maghrabi, M. R., Rebecchi, M. and Scarlata, S. (2000) The pleckstrin homology domain of phospholipase C-beta(2) links the binding of gbetagamma to activation of the catalytic core. J. Biol. Chem. 275, 7466-7469.   DOI   ScienceOn
184 Falasca, M., Logan, S. K., Lehto, V. P., Baccante, G., Lemmon, M. A. and Schlessinger, J. (1998) Activation of phospholipase C gamma by PI 3-kinase-induced PH domain- mediated membrane targeting. EMBO J. 17, 414-422.   DOI   ScienceOn
185 Wen, W., Yan, J. and Zhang, M. (2006) Structural characterization of the split pleckstrin homology domain in phospholipase C-gamma1 and its interaction with TRPC3. J. Biol. Chem. 281, 12060-12068   DOI   ScienceOn
186 Blum, S. and Dash, P. K. (2004) A cell-permeable phospholipase Cgamma1-binding peptide transduces neurons and impairs long-term spatial memory. Learn Mem. 11, 239-243.   DOI   ScienceOn
187 Bolanos, C. A., Neve, R. L. and Nestler, E. J. (2005) Phospholipase C gamma in distinct regions of the ventral tegmental area differentially regulates morphine-induced locomotor activity. Synapse 56, 166-169.   DOI   ScienceOn
188 Bolanos, C. A., Perrotti, L. I., Edwards, S., Eisch, A. J., Barrot, M., Olson, V. G., Russell, D. S., Neve, R. L. and Nestler, E. J. (2003) Phospholipase Cgamma in distinct regions of the ventral tegmental area differentially modulates mood-related behaviors. J. Neurosci. 23, 7569-7576.   DOI
189 Turecki, G., Grof, P., Cavazzoni, P., Duffy, A., Grof, E., Ahrens, B., Berghofer, A., Muller-Oerlinghausen, B., Dvorakova, M., Libigerova, E., Vojtechovsky, M., Zvolsky, P., Joober, R., Nilsson, A., Prochazka, H., Licht, R. W., Rasmussen, N. A., Schou, M., Vestergaard, P., Holzinger, A., Schumann, C., Thau, K., Rouleau, G. A. and Alda, M. (1998) Evidence for a role of phospholipase C-gamma1 in the pathogenesis of bipolar disorder. Mol. Psychiatry 3, 534-538.   DOI
190 Suh, B. C. and Hille, B. (2005) Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Neurobiol. 15, 370-378.   DOI   ScienceOn
191 Horowitz, L. F., Hirdes, W., Suh, B. C., Hilgemann, D. W., Mackie, K. and Hille, B. (2005) Phospholipase C in living cells: activation, inhibition, $Ca^{2+}$ requirement, and regulation of M current. J. Gen. Physiol. 126, 243-262.   DOI   ScienceOn
192 Oh, J. E., Kook, J. K., Park, K. H., Lee, G., Seo, B. M. and Min, B. M. (2003) Phospholipase C-gamma1 is required for subculture-induced terminal differentiation of normal human oral keratinocytes. Int. J. Mol. Med. 11, 491-498.
193 Nakashima, S., Banno, Y., Watanabe, T., Nakamura, Y., Mizutani, T., Sakai, H., Zhao, Y., Sugimoto, Y. and Nozawa, Y. (1995) Deletion and site-directed mutagenesis of EF-hand domain of phospholipase C-delta 1: effects on its activity. Biochem. Biophys. Res. Commun. 211, 365-369.
194 Otterhag, L., Sommarin, M. and Pical, C. (2001) N-terminal EF-hand-like domain is required for phosphoinositide- specific phospholipase C activity in Arabidopsis thaliana. FEBS Lett. 497, 165-170.   DOI   ScienceOn
195 Homma, Y., Takenawa, T., Emori, Y., Sorimachi, H. and Suzuki, K. (1989) Tissue- and cell type-specific expression of mRNAs for four types of inositol phospholipid-specific phospholipase C. Biochem. Biophys. Res. Commun. 164, 406-412.   DOI   ScienceOn
196 Park, D., Jhon, D. Y., Kriz, R., Knopf, J. and Rhee, S. G. (1992) Cloning, sequencing, expression, and Gq-independent activation of phospholipase C-beta 2. J. Biol. Chem. 267, 16048-16055.
197 Hokin, M. R. and Hokin, L. E. (1953) Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol. Chem. 203, 967-977.
198 Streb, H., Irvine, R. F., Berridge, M. J. and Schulz, I. (1983) Release of $Ca^{2+}$ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 67-69.   DOI   ScienceOn
199 Takenawa, T. and Nagai, Y. (1981) Purification of phosphatidylinositol- specific phospholipase C from rat liver. J. Biol. Chem. 256, 6769-6775.
200 Suh, P. G., Ryu, S. H., Moon, K. H., Suh, H. W. and Rhee, S. G. (1988) Cloning and sequence of multiple forms of phospholipase C. Cell 54, 161-169.   DOI   ScienceOn
201 Kolsch, V., Charest, P. G. and Firtel, R. A. (2008) The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci. 121, 551-559.   DOI   ScienceOn
202 Kassis, J., Moellinger, J., Lo, H., Greenberg, N. M., Kim, H. G. and Wells, A. (1999) A role for phospholipase C-gamma-mediated signaling in tumor cell invasion. Clin. Cancer Res. 5, 2251-2260.
203 Shepard, C. R., Kassis, J., Whaley, D. L., Kim, H. G. and Wells, A. (2007) PLC gamma contributes to metastasis of in situ-occurring mammary and prostate tumors. Oncogene 26, 3020-3026.   DOI   ScienceOn
204 Irvin, B. J., Williams, B. L., Nilson, A. E., Maynor, H. O. and Abraham, R. T. (2000) Pleiotropic contributions of phospholipase C-gamma1 (PLC-gamma1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-gamma1-deficient Jurkat T-cell line. Mol. Cell. Biol. 20, 9149-9161.   DOI
205 Tkaczyk, C., Beaven, M. A., Brachman, S. M., Metcalfe, D. D. and Gilfillan, A. M. (2003) The phospholipase C gamma 1-dependent pathway of Fc epsilon RI-mediated mast cell activation is regulated independently of phosphatidylinositol 3-kinase. J. Biol. Chem. 278, 48474-48484.   DOI   ScienceOn
206 Wells, A. D., Liu, Q. H., Hondowicz, B., Zhang, J., Turka, L. A. and Freedman, B. D. (2003) Regulation of T cell activation and tolerance by phospholipase C gamma- 1-dependent integrin avidity modulation. J. Immunol. 170, 4127-4133.   DOI
207 Bae, S. S., Lee, Y. H., Chang, J. S., Galadari, S. H., Kim, Y. S., Ryu, S. H. and Suh, P. G. (1998) Src homology domains of phospholipase C gamma1 inhibit nerve growth factor- induced differentiation of PC12 cells. J. Neurochem. 71, 178-185.   DOI   ScienceOn
208 Essen, L. O., Perisic, O., Cheung, R., Katan, M. and Williams, R. L. (1996) Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature 380, 595-602.   DOI   ScienceOn
209 Ellis, M. V., U, S. and Katan, M. (1995) Mutations within a highly conserved sequence present in the X region of phosphoinositide- specific phospholipase C-delta 1. Biochem. J. 307, 69-75.   DOI
210 Williams, R. L. (1999) Mammalian phosphoinositide-specific phospholipase C. Biochim. Biophys. Acta. 1441, 255-267.   DOI   ScienceOn
211 Ellis, M. V., James, S. R., Perisic, O., Downes, C. P., Williams, R. L. and Katan, M. (1998) Catalytic domain of phosphoinositide-specific phospholipase C (PLC). Mutational analysis of residues within the active site and hydrophobic ridge of plcdelta1. J. Biol. Chem. 273, 11650-11659.   DOI
212 Wang, L. P., Lim, C., Kuan, Y., Chen, C. L., Chen, H. F. and King, K. (1996) Positive charge at position 549 is essential for phosphatidylinositol 4,5-bisphosphate-hydrolyzing but not phosphatidylinositol-hydrolyzing activities of human phospholipase C delta1. J. Biol. Chem. 271, 24505-24516.   DOI   ScienceOn