Browse > Article
http://dx.doi.org/10.4014/jmb.2105.05044

Bioconversion of Untreated Corn Hull into L-Malic Acid by Trifunctional Xylanolytic Enzyme from Paenibacillus curdlanolyticus B-6 and Acetobacter tropicalis H-1  

Duong, Thi Bich Huong (Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Ketbot, Prattana (Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi)
Phitsuwan, Paripok (Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Waeonukul, Rattiya (Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Tachaapaikoon, Chakrit (Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Kosugi, Akihiko (Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences)
Ratanakhanokchai, Khanok (Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Pason, Patthra (Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.9, 2021 , pp. 1262-1271 More about this Journal
Abstract
L-Malic acid (L-MA) is widely used in food and non-food products. However, few microorganisms have been able to efficiently produce L-MA from xylose derived from lignocellulosic biomass (LB). The objective of this work is to convert LB into L-MA with the concept of a bioeconomy and environmentally friendly process. The unique trifunctional xylanolytic enzyme, PcAxy43A from Paenibacillus curdlanolyticus B-6, effectively hydrolyzed xylan in untreated LB, especially corn hull to xylose, in one step. Furthermore, the newly isolated, Acetobacter tropicalis strain H1 was able to convert high concentrations of xylose derived from corn hull into L-MA as the main product, which can be easily purified. The strain H1 successfully produced a high L-MA titer of 77.09 g/l, with a yield of 0.77 g/g and a productivity of 0.64 g/l/h from the xylose derived from corn hull. The process presented in this research is an efficient, low-cost and environmentally friendly biological process for the green production of L-MA from LB.
Keywords
Acetobactor tropicalis; corn hull; L-malic acid; Paenibacillus curdlanolyticus; xylanolytic enzyme; xylose;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhou L, Chen X, Tian X. 2018. The impact of fine particulate matter (PM2.5) on China's agricultural production from 2001 to 2010. J. Clean. Prod. 178: 133-141.   DOI
2 Barl B, Biliaderis CG, Murray ED, Macgregor AW. 1991. Combined chemical and enzymic treatments of corn husk lignocellulosics. J. Sci. Food Agric. 56: 195-214.   DOI
3 Jonsson LJ, Martin C. 2016. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199: 103-112.   DOI
4 Kumar P, Barrett DM, Delwiche MJ, Stroeve P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48: 3713-3729.   DOI
5 Teeravivattanakit T, Baramee S, Phitsuwan P, Sornyotha S, Waeonukul R, Pason P, et al. 2017. Chemical pretreatment-independent saccharifications of xylan and cellulose of rice straw by bacterial weak lignin-binding xylanolytic and cellulolytic enzymes. Appl. Environ. Microbiol. 83: e01522-17.
6 Kovilein A, Kubisch C, Cai L, Ochsenreither K. 2019. Malic acid production from renewables: a review. J. Chem. Technol. Biotech. 95: 513-526.
7 Chi Z, Wang ZP, Wang GY, Khan I, Chi ZM. 2016. Microbial biosynthesis and secretion of L-malic acid and its applications. Crit. Rev. Biotechnol. 36: 99-107.   DOI
8 Deng Y, Mao Y, Zhang X. 2016. Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass. Biotechnol. Prog. 32: 14-20.   DOI
9 Dorsam S, Fesseler J, Gorte O, Hahn T, Zibek S, Syldatk C, et al. 2017. Sustainable carbon sources for microbial organic acid production with filamentous fungi. Biotechnol. Biofuels 10: 242.   DOI
10 Cheng C, Zhou Y, Lin M, Wei P, Yang S-T. 2017. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: fermentation kinetics and economic analysis. Bioresour. Technol. 223: 166-174.   DOI
11 Zeng W, Zhang B, Liu Q, Chen G, Liang Z. 2019. Analysis of the L-malate biosynthesis pathway involved in poly (β-L-malic acid) production in Aureobasidium melanogenum GXZ-6 by addition of metabolic intermediates and inhibitors. J. Microbiol. 57: 281-287.   DOI
12 Giorno L, Drioli E, Carvoli G, Cassano A, Donato L. 2001. Study of an enzyme membrane reactor with immobilized fumarase for production of L-malic acid. Biotechnol. Bioeng. 72: 77-84.   DOI
13 Wong KK, Saddler JN. 1992. Trichoderma xylanases, their properties and application. Crit. Rev. Biotechnol. 12: 413-435.   DOI
14 Van Dyk J, Pletschke B. 2012. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30: 1458-1480.   DOI
15 Prabhu AA, Ledesma-Amaro R, Lin CSK, Coulon F, Thakur VK, Kumar V. 2020. Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control. Biotechnol. Biofuels 13: 113.   DOI
16 Ye Y, Li X, Zhao J. 2017. Production and characteristics of a novel xylose-and alkali-tolerant GH 43 β-xylosidase from Penicillium oxalicum for promoting hemicellulose degradation. Sci. Rep. 7: 1-11.   DOI
17 Zou X, Cheng C, Feng J, Song X, Lin M, Yang S-T. 2019. Biosynthesis of polymalic acid in fermentation: advances and prospects for industrial application. Crit. Rev. Biotechnol. 39: 408-421.   DOI
18 Baramee S, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C, Kosugi A, et al. 2015. Alkaline xylanolytic-cellulolytic multienzyme complex from the novel anaerobic alkalithermophilic bacterium Cellulosibacter alkalithermophilus and its hydrolysis of insoluble polysaccharides under neutral and alkaline conditions. Process Biochem. 50: 643-650.   DOI
19 Pauly M, Keegstra K. 2008. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 54: 559-568.   DOI
20 Komesu A, Oliveira J, Neto JM, Penteado ED, Diniz AAR, da Silva Martins LH. 2020. Xylose fermentation to bioethanol production using genetic engineering microorganisms. pp. 143-154. In Arindam K, Vinay S (eds.), Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass, 1st Ed. Elsevier, Amsterdam.
21 Spiridon I, Poni P, Ghica G. 2018. Biological and pharmaceutical applications of lignin and its derivatives: a mini-review. Cellulose Chem. Technol. 52: 543-550.
22 Kumar V, Binod P, Sindhu R, Gnansounou E, Ahluwalia V. 2018. Bioconversion of pentose sugars to value added chemicals and fuels: Recent trends, challenges and possibilities. Bioresour. Technol. 269: 443-451.   DOI
23 Tachaapaikoon C, Kyu KL, and Ratanakhanokchai K. 2006. Purification of xylanase from alkaliphilic Bacillus sp. K-8 by using corn husk column. Process Biochem. 41: 2441-2445.   DOI
24 Baramee S, Siriatcharanon A-k, Ketbot P, Teeravivattanakit T, Waeonukul R, Pason P, et al. 2020. Biological pretreatment of rice straw with cellulase-free xylanolytic enzyme-producing Bacillus firmus K-1: Structural modification and biomass digestibility. Renew. Energy 160: 555-563.   DOI
25 Yan Z, Zheng XW, Chen JY, Han JS, Han BZ. 2013. Effect of different Bacillus strains on the profile of organic acids in a liquid culture of Daqu. J. Inst. Brew. 119: 78-83.   DOI
26 Zhang X, Wang X, Shanmugam K, Ingram L. 2011. L-malate production by metabolically engineered Escherichia coli. App. Environ. Microbiol. 77: 427-434.   DOI
27 Li X, Liu Y, Yang Y, Zhang H, Wang H, Wu Y, et al. 2014. High levels of malic acid production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain. Biotechnol. Bioprocess Eng. 19: 478-492.   DOI
28 Geyer M, Onyancha FM, Nicol W, Brink HG. 2018. Malic acid production by Aspergillus oryzae: the role of CaCO3. Chem. Eng. 70: 1801-1806.
29 Sasaki Y, Takao S. 1967. Organic acid production by Basidiomycetes. : II. Acid production from xylose. J. Facul. Agr. Hokkaido Univ. 55: 174-181.
30 Zeng W, Zhang B, Li M, Ding S, Chen G, Liang Z. 2019. Development and benefit evaluation of fermentation strategies for poly (malic acid) production from malt syrup by Aureobasidium melanogenum GXZ-6. Bioresour. Technol. 274: 479-487.   DOI
31 Zou X, Yang J, Tian X, Guo M, Li Z, Li Y. 2016. Production of polymalic acid and malic acid from xylose and corncob hydrolysate by a novel Aureobasidium pullulans YJ 6-11 strain. Process Biochem. 51: 16-23.   DOI
32 Teeravivattanakit T, Baramee S, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C, et al. 2016. Novel trifunctional xylanolytic enzyme Axy43A from Paenibacillus curdlanolyticus strain B-6 exhibiting endo-xylanase, β-D-xylosidase, and arabinoxylan arabinofuranohydrolase activities. Appl. Environ. Microbiol. 82: 6942-6951.   DOI
33 Duong HTBl, Ratanakhanokchai K, Tachaapaikoon C, Waeonukul R, Pason P. 2020. Identification of Acetorbactor tropicalis for malic acid production. pp. 123-127. Proceeding of the 14th South East Asian Technical University Consortium 2020 (SEATUC 2020) International Conference, 27th-28th February 2020, KX Building, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
34 Leathers TD, Manitchotpisit P. 2013. Production of poly (β-L-malic acid)(PMA) from agricultural biomass substrates by Aureobasidium pullulans. Biotechnol. Lett. 35: 83-89.   DOI
35 Zou X, Wang Y, Tu G, Zan Z, Wu X. 2015. Adaptation and transcriptome analysis of Aureobasidium pullulans in corncob hydrolysate for increased inhibitor tolerance to malic acid production. PLoS One 10: e0121416.   DOI
36 Gil NY, Gwon HM, Yeo SH, Kim SY. 2020. Metabolite profile and immunomodulatory properties of bellflower root vinegar produced using Acetobacter pasteurianus A11-2. Foods 9: 1-14.
37 Avanthi A, Kumar S, Sherpa KC, Banerjee R. 2017. Bioconversion of hemicelluloses of lignocellulosic biomass to ethanol: an attempt to utilize pentose sugars. Biofuels 8: 431-444.   DOI
38 Dai Z, Zhou H, Zhang S, Gu H, Yang Q, Zhang W, et al. 2018. Current advance in biological production of malic acid using wild type and metabolic engineered strains. Bioresour. Technol. 258: 345-353.   DOI
39 Yegin S, Saha BC, Kennedy GJ, Leathers TD. 2019. Valorization of egg shell as a detoxifying and buffering agent for efficient polymalic acid production by Aureobasidium pullulans NRRL Y-2311-1 from barley straw hydrolysate. Bioresour. Technol. 278: 130-137.   DOI
40 Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, et al. 2008. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Procedure 1617: 1-16.
41 Khuenkaeo N, Tippayawong N. 2020. Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues. Chem. Eng. Commun. 207: 153-160.   DOI
42 Mardawati E, Werner A, Bley T, Mtap K, Setiadi T. 2014. The enzymatic hydrolysis of oil palm empty fruit bunches to xylose. J. Jpn. Inst. Energy 93: 973-978.   DOI
43 Jommuengbout P, Pinitglang S, Kyu KL, Ratanakhanokchai K. 2009. Substrate-binding site of family 11 xylanase from Bacillus firmus K-1 by molecular docking. Biosci. Biotechnol. Biochem. 73: 833-839.   DOI
44 Nelson N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380.   DOI