Browse > Article
http://dx.doi.org/10.4014/jmb.1901.01030

Production of Cyanocarboxylic Acid by Acidovorax facilis 72W Nitrilase Displayed on the Spore Surface of Bacillus subtilis  

Zhong, Xia (College of Life Science and Technology, Jinan University)
Yang, Shaomin (Department of Pain Medicine, Shenzhen Municipal Sixth People's Hospital)
Su, Xinying (College of Life Science and Technology, Jinan University)
Shen, Xiaoxia (College of Life Science and Technology, Jinan University)
Zhao, Wen (College of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology)
Chan, Zhi (College of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.5, 2019 , pp. 749-757 More about this Journal
Abstract
Nitrilase is a valuable hydrolase that catalyzes nitriles into carboxylic acid and ammonia. Its applications, however, are severely restricted by the harsh conditions of industrial reaction processes. To solve this problem, a nitrilase from Acidovorax facilis 72W was inserted into an Escherichia coli-Bacillus subtilis shuttle vector for spore surface display. Western blot, enzyme activity measurements and flow cytometric analysis results all indicated a successful spore surface display of the CotB-nit fusion protein. In addition, the optimal catalytic pH value and temperature of the displayed nitrilase were determined to be 7.0 and $50^{\circ}C$, respectively. Moreover, results of reusability tests revealed that 64% of the initial activity of the displayed nitrilase was still retained at the $10^{th}$ cycle. Furthermore, hydrolysis efficiency of upscale production of cyanocarboxylic acid was significantly higher in the displayed nitrilase-treated group than in the free group expressed by E. coli (pET-28a-nit). Generally, the display of A. facilis 72W nitrilase on the spore surface of Bacillus subtilis may be a useful method for immobilization of enzyme and consequent biocatalytic stabilization.
Keywords
Acidovorax facilis 72W; nitrilase; Bacillus subtilis; immobilization; spore surface display;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rey P, Rossi J-C, Taillades J, Gros G, Nore O. 2004. Hydrolysis of nitriles using an immobilized nitrilase:applications to the synthesis of methionine hydroxy analogue derivatives. J. Agr. Food Chem. 52: 8155-8162.   DOI
2 Ning D, Leng X, Li Q, Xu W. 2011. Surface-displayed VP28 on Bacillus subtilis spores induce protection against white spot syndrome virus in crayfish by oral administration. J. Appl. Microbiol. 111: 1327-1336.   DOI
3 Knecht LD, Pasini P, Daunert S. 2011. Bacterial spores as platforms for bioanalytical and biomedical applications. Anal. Bioanal. Chem. 400: 977-989.   DOI
4 Hinc K, Isticato R, Dembek M, Karczewska J, Iwanicki A, Peszynska-Sularz G, et al. 2010. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb. Cell Fact. 9: 2.   DOI
5 Chen HY, Zhang TX, Sun TY, Ni Z, Le YL, Tian R, et al. 2015. Clostridium thermocellum nitrilase expression and surface display on Bacillus subtilis spores. J. Mol. Microbiol. Biotechnol. 25: 381-387.   DOI
6 Tavassoli S, Hinc K, Iwanicki A, Obuchowski M, Ahmadian G. 2013. Investigation of spore coat display of Bacillus subtilis beta-galactosidase for developing of whole cell biocatalyst. Arch. Microbiol. 195: 197-202.   DOI
7 Mingmongkolchai S, Panbangred W. 2018. Display of Escherichia coli phytase on the surface of Bacillus subtilis spore using CotG as an anchor protein. Appl. Biochem. Biotechnol. 187(3): 838-855.   DOI
8 Koeller KM, Wong CH. 2001. Enzymes for chemical synthesis. Nature 409: 232-240.   DOI
9 Ran N, Zhao L, Chen Z, Tao J. 2008. Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green Chem. 10: 361-372.   DOI
10 Schulze B, Wubbolts MG. 1999. Biocatalysis for industrial production of fine chemicals. Curr. Opin. Biotechnol. 10: 609-615.   DOI
11 Gong JS, Shi JS, Lu ZM, Li H, Zhou ZM, Xu ZH. 2017. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises. Crit. Rev. Biotechnol. 37: 69-81.   DOI
12 Mattossovich R, Iacono R, Cangiano G, Cobucci-Ponzano B, Isticato R, Moracci M, et al. 2017. Conversion of xylan by recyclable spores of Bacillus subtilis displaying thermophilic enzymes. Microb. Cell Fact. 16: 218.   DOI
13 Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548-572.   DOI
14 Rostami A, Hinc K, Goshadrou F, Shali A, Bayat M, Hassanzadeh M, et al. 2017. Display of B-pumilus chitinase on the surface of B-subtilis spore as a potential biopesticide. Pestic. Biochem. Physiol. 140: 17-23.   DOI
15 AG, ZB. 1989. Induction, purification, and characterization of the nitrilase of Fusarium oxy sporum f sp. melonis. Biotechnol. Appl. Biochem. 11: 581-601.
16 Layh N, Willetts A. 1998. Enzymatic nitrile hydrolysis in low water systems. Biotechnol. Lett. 20: 329-331.   DOI
17 Qu Y, Wang J, Zhang Z, Shi S, Li D, Shen W, et al. 2014. Catalytic transformation of HODAs using an efficient metacleavage product hydrolase-spore surface display system. J. Mol. Catal. B-Enzym. 102: 204-210.   DOI
18 Kim J. 2017. Surface display of lipolytic enzyme, Lipase A and Lipase B of Bacillus subtilis on the Bacillus subtilis spore. Biotechnol. Bioprocess Eng. 22: 462-468.   DOI
19 Chen H, Chen Z, Ni Z, Tian R, Zhang T, Jia J, et al. 2016. Display of Thermotoga maritima MSB8 nitrilase on the spore surface of Bacillus subtilis using out coat protein CotG as the fusion partner. J. Mol. Catal. B-Enzym. 123: 73-80.   DOI
20 Chen H, Tian R, Ni Z, Zhang Q, Zhang T, Chen Z, et al. 2015. Surface display of the thermophilic lipase Tm1350 on the spore of Bacillus subtilis by the CotB anchor protein. Extremophiles 19: 799-808.   DOI
21 Lian C, Zhou Y, Feng F, Chen L, Tang Q, Yao Q, et al. 2014. Surface display of human growth hormone on Bacillus subtilis spores for oral administration. Curr. Microbiol. 68:463-471.   DOI
22 Iwanicki A, Piatek I, Stasilojc M, Grela A, Lega T, Obuchowski M, et al. 2014. A system of vectors for Bacillus subtilis spore surface display. Microb. Cell Fact. 13: 30-38.   DOI
23 Hinc K, Ghandili S, Karbalaee G, Shali A, Noghabi KA, Ricca E, et al. 2010. Efficient binding of nickel ions to recombinant Bacillus subtilis spores. Res. Microbiol. 161: 757-764.   DOI
24 Hinc K, Iwanicki A, Obuchowski M. 2013. New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis. Microb. Cell Fact. 12: 22.   DOI
25 Kobayashi M, Yanaka N, Nagasawa T, Yamada H. 1990. Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. J. Bacteriol. 172: 4807-4815.   DOI
26 Reetz MT. 2013. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J. Am. Chem. Soc. 135: 12480-12496.   DOI
27 M.Thomas S, DiCosimo R, Nagarajan V. 2002. Biocatalysis:applications and potentials for the chemical industry. Trends Biotechnol. 20: 238-242.   DOI
28 Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH. 2012. Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb. Cell Fact. 11: 142.   DOI
29 Yamamoto K, Fujimatsu I, Komatsu K-I. 1992. Purification and Characterization of the Nitrilase from Alcaligenes faecalis ATCC 8750 Responsible for Enantioselective Hydrolysis of Mandelonitrile. J. Biosci. Bioeng. 73: 425-430.
30 Layh N, Parratt J, Willetts A. 1998. Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J. Mol. Catal. BEnzym. 5: 467-474.   DOI
31 Hann EC, Sigmund AE, Hennessey SM, Gavagan JE, Short DR, Ben-Bassat A, et al. 2002. Optimization of an immobilizedcell biocatalyst for production of 4-cyanopentanoic acid. Org. Process Res. Dev. 6: 492-496.   DOI
32 Cooling FB, Gavagan JE, Fager SK, Hann EC, Wagner LW, Fallon RD, et al. 2001. Chemoenzymatic production of 1,5-dimethyl-2-piperidone. J. Mol. Catal. B-Enzym. 11: 295-306.   DOI
33 Zheng GW, Xu JH. 2011. New opportunities for biocatalysis:driving the synthesis of chiral chemicals. Curr. Opin. Biotechnol. 22: 784-792.   DOI
34 Yao P, Li J, Yuan J, Han C, Liu X, Feng J, et al. 2015. Enzymatic synthesis of a key intermediate for rosuvastatin by nitrilase-catalyzed hydrolysis of ethyl (R)-4-cyano-3-hydroxybutyate at high substrate concentration. ChemCatChem. 7: 271-275.   DOI
35 Hwang BY, Kim BG, Kim JH. 2011. Bacterial surface display of a co-factor containing enzyme, omega-transaminase from Vibrio fluvialis using the Bacillus subtilis spore display system. Biosci. Biotechnol. Biochem. 75: 1862-1865.   DOI
36 Chen HY, Chen Z, Wu BG, Ullah J, Zhang TX, Jia JR, et al. 2017. Influences of various peptide linkers on the thermotoga maritima MSB8 nitrilase displayed on the spore surface of Bacillus subtilis. J. Mol.Microbiol. Biotechnol. 27: 64-71.   DOI
37 Zhang Z-J, Yu H-L, Imanaka T, Xu J-H. 2015. Efficient production of (R)-(-)-mandelic acid by isopropanolpermeabilized recombinant E. coli cells expressing Alcaligenes sp. nitrilase. Biochem. Eng J. 95: 71-77.   DOI
38 Velankar H, Clarke KG, du Preez R, Cowan DA, Burton SG. 2010. Developments in nitrile and amide biotransformation processes. Trends Biotechnol. 28: 561-569.   DOI
39 Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Tech. 40: 1451-1463.   DOI
40 Kabaivanova L, Dobreva E, Dimitrov P, Emanuilova E. 2005. Immobilization of cells with nitrilase activity from a thermophilic bacterial strain. J. Ind. Microbiol. Biotechnol. 32:7-11.   DOI
41 Malandra A, Cantarella M, Kaplan O, Vejvoda V, Uhnakova B, Stepankova B, et al. 2009. Continuous hydrolysis of 4-cyanopyridine by nitrilases from Fusarium solani O1 and Aspergillus niger K10. Appl. Microbiol. Biotechnol. 85: 277-284.   DOI
42 Isticato R, Cangiano G, Tran HT, Ciabattini A, Medaglini D, Oggioni MR, et al. 2001. Surface display of recombinant proteins on Bacillus subtilis spores. J. Bacteriol. 183: 6294-6301.   DOI
43 Gavagan JE, Fager SK, Fallon RD, Folsom PW, Herkes FE, Eisenberg A, et al. 1998. Chemoenzymic production of lactams from aliphatic r,${\omega}$-dinitriles. J. Org. Chem. 63: 4792-4801.   DOI