Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00661

High-Rate Blended Cathode with Mixed Morphology for All-Solid-State Li-ion Batteries  

Heo, Kookjin (Korea Institute of Industrial Technology (KITECH))
Im, Jehong (Korea Institute of Industrial Technology (KITECH))
Lee, Jeong-Seon (Korea Institute of Industrial Technology (KITECH))
Jo, Jeonggeon (Department of Materials Science and Engineering, Chonnam National University)
Kim, Seokhun (Department of Materials Science and Engineering, Chonnam National University)
Kim, Jaekook (Department of Materials Science and Engineering, Chonnam National University)
Lim, Jinsub (Korea Institute of Industrial Technology (KITECH))
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.3, 2020 , pp. 282-290 More about this Journal
Abstract
In this article, we report the effect of blended cathode materials on the performance of all-solid-state lithium-ion batteries (ASLBs) with oxide-based organic/inorganic hybrid electrolytes. LiFePO4 material is good candidates as cathode material in PEO-based solid electrolytes because of their low operating potential of 3.4 V; however, LiFePO4 suffers from low electric conductivity and low Li ion diffusion rate across the LiFePO4/FePO4 interface. Particularly, monoclinic Li3V2(PO4)3 (LVP) is a well-known high-power-density cathode material due to its rapid ionic diffusion properties. Therefore, the structure, cycling stability, and rate performance of the blended LiFePO4/Li3V2(PO4)3 cathode material in ASLBs with oxidebased inorganic/organic-hybrid electrolytes are investigated by using powder X-ray diffraction analysis, field-emission scanning electron microscopy, Brunauer-Emmett-Teller sorption experiments, electrochemical impedance spectroscopy, and galvanostatic measurements.
Keywords
Blending Effect; All Solid State Battery; $LiFePO_4$ Cathoe Material; $Li_3V_2(PO_4)_3$ Cathode Material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Raghavan, J. Manuel, X. Zhao, D.S. Kim, J.H. Ahn, and C. Nah, J. Power Sources, 2011, 196(16), 6742-6749.   DOI
2 H.S. Jeong, D.W. Kim, Y.U. Jeong, and S.Y. Lee, J. Power Sources, 2010, 195(18), 6116-6121.   DOI
3 S.W. Choi, S.M. Jo, W.S. Lee, and Y.R. Kim, Adv. Mater., 2003, 15(23), 2027-2032.   DOI
4 Y. Wang and W.H. Zhong, ChemElectroChem, 2015, 2(1), 22-36.   DOI
5 J.H. Choi, C.H. Lee, J.H. Yu, C.H. Doh, and S.M. Lee, J. Power Sources, 2015, 274, 458-463.   DOI
6 D. Zhang, L. Zhang, K. Yang, H. Wang, C. Yu, D. Xu, B. Xu, and L. M. Wang, ACS Appl. Mater. Interfaces, 2017, 9(42), 36886-36896.   DOI
7 D. H. Kim, M. Y. Kim, S. H. Yang, H, M. Ryu, H. Y. Jung, H. J. Ban, S. J. Park, J. Lim, and H. S. Kim, J. Ind. Eng. Chem., 2019, 71, 445-451.   DOI
8 K. Hanai, K. Kusagawa, M. Ueno, T. Kobayashi, N. Imanishi, A. Hirano, Y. Takeda, and O. Yamamoto, J. Power Sources, 2010, 195(9), 2956-2960.   DOI
9 F. Croce, F.S. Fiory, L. Persi, and B. Scrosati, Electrochem. Solid State Lett., 2001, 4(8), A121-A123.   DOI
10 S. Kim, J, Song, B, Sambandam, S. Kim, J. Jo, S. Park, S. Baek, and J. Kim, Mater. Today Commun., 2017, 10, 105-111.   DOI
11 J. Kang, V. Mathew, J. Gim, S. Kim, J. Song, W. B. Im, J. Han, J. Y. Lee, and J. Kim, Sci. Rep.,2014, 4, 4047.
12 J. Jo, J. Gim, J. Song, Y. Kim, V. Mathew, S. Kim, S. Kim, S. Park, J. P. Baboo, and J. Kim, Ceram. Int., 2017, 43(5), 4288-4294.   DOI
13 J. Lim, V. Mathew, K. Kim, J. Moon, and J. Kim, J. Electrochem. Soc., 2011, 158(6), A736-A740.   DOI
14 C. Heubner, T. Leibmann, M. Schneider and A. Michaelis, Electrochim. Acta, 2018, 269, 745-760.   DOI
15 K.-S. Lee, S.-T. Myung, D.-W. Kim, and Y.-K. Sun, J. Power Sources, 2011, 196(16), 6974-6977.   DOI
16 A. Klein, P. Axmann, and M. Wohlfahrt-Mehrens, J. Power Sources, 2016, 309, 169-177.   DOI
17 K.G. Gallagher, S.-H. Kang, S.U. Park, and S.Y. Han, J. Power Sources, 2011, 196, 9702-9707.   DOI
18 L. Liu, W. Xiao, M. Chen, H. Chen, Y. Cui, G. Zeng, Y. Chen, X. Ke, Z. Guo, Z. Shi, H. Zahng and S. Chou, J. Alloy and Compds, 2017, 719, 281-287.   DOI
19 Q.X. Du, Z.F. Tang, X.H. Ma, Y. Zang, X. Sun, Y. Shao, Z.Y. Wen, and C.H. Chen, Solid State Ionics, 2015, 279, 11-17.   DOI
20 J.S. Lim, J.H. Gim, J.J. Song, D.T. Nguyen, S.J. Kim, J.G. Jo, V. Mathew, and J.K. Kim, J. Power Sources, 2016, 304, 354-359.   DOI
21 B. L. Ellis, K. T. Lee, and L. F. Nazar, Chem. Mater., 2010, 22(3), 691-714.   DOI
22 K. Heo, J. S. Lee, H. S. Kim, J. Kim and J. Lim, J. Electrochem, Soc., 2017, 164(12), A2398-2402.   DOI
23 M. Armand and J.M. Tarascon, Nature, 2008, 451(7179), 652-657.   DOI
24 K. Takada, Acta Mater, 2013, 61(3), 759-770.   DOI
25 W. Zhanga, J. Niea, F. Lic, Z.L. Wanga, and C. Sun, Nano Energy, 2018, 45, 413-419.   DOI
26 F. Croce, G.B. Appetecchi, L. Persi, and B. Scrosati, Nature, 1998, 394(6692), 456-458.   DOI
27 T. Stergiopoulos, I.M. Arabatzis, G. Katsaros, and P. Falaras, Nano Lett., 2002, 2(11), 1259-1261.   DOI
28 X.Ben, W. Zhang, N. Chen and C. Sun, J. Phys. Chem., 2018, 122(18), 9852-9858.   DOI
29 Z. Jiang, B. Carroll and K. M. Abraham, Electrochim. Acta, 1997, 42(17), 2667-2677.   DOI