Browse > Article

Nucleotide Sequence and Secondary Structure of 5S rRNA from Sphingobium chungbukense DJ77  

Kwon, Hae-Ryong (School of Life Sciences, Chungbuk National University)
Kim, Young-Chang (School of Life Sciences, Chungbuk National University)
Publication Information
Journal of Microbiology / v.45, no.1, 2007 , pp. 79-82 More about this Journal
Abstract
The 58 rRNA gene from Sphingobium chungbukense DJ77 was identified. The secondary structure of the 199-base-long RNA was proposed. The two-base-long D loop was the shortest among all of the known 5S rRNAs. The U19-U64 non-canonical pair in the helix II region was uniquely found in strain DJ77 among all of the sphingomonads.
Keywords
5S ribosomal RNA; Sphingobium chungbukense; secondary structure; phylogenetic analysis; organization of rRNA operon;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Ewing, B., L. Hillier, M.C. Wendl, and P. Green. 1998. Base-calling of automated sequencer traces using phred. I. accuracy assessment. Genome Res. 8, 175-185   DOI   PUBMED
2 Kim, C.K., J.W. Kim, Y.C. Kim, and T.I. Mheen. 1986. Isolation of aromatic hydrocarbon-degrading bacteria and genetic characterization of their plasmid genes. Kor. J. Microbiol. 24, 67-72   과학기술학회마을
3 Nagaswamy, U, N. Voss, Z. Zhang, and G.E. Fox. 2000. Database of non-canonical base pairs found in known RNA structures. Nucleic Acids Res. 28, 375-376   DOI
4 Gutell, R.R., N. Larsen, and C.R. Woese. 1994. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative prospective. Microbiol. Rev. 58, 10-26   PUBMED
5 Gordon, D., C. Abajian, and P. Green. 1998. Consed: a graphical tool for sequence finishing. Genome Res. 8, 195-202   DOI   PUBMED
6 Takeuchi, M., K. Hamana, and A. Hiraishi. 2001. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol. 51, 1405-1417   DOI   PUBMED
7 Felsenstein, J. 1993. PHYLIP (phylogeny inference package), version 3.5c. University of Washington
8 Lee, K.Y., H.R. Kwon, W.H. Lee, and Y.C. Kim. 2005. Nucleotide sequence and secondary structure of 16S rRNA from Sphingomonas chungbukensis DJ77. Kor. J. Microbiol. 41, 125-129   과학기술학회마을
9 Pal, R., S. Bala, M. Dadhwal, M. Kumar, G. Dhingra, O. Prakash, S.R. Prabagaran, S. Shivaji, J. Cullum, C. Holliger, and R. Lal. 2005. Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int. J. Syst. Evol. Microbiol. 55, 1965-1972   DOI   ScienceOn
10 Szymanski, M., M.Z. Barciszewska, J. Barciszewski, and V.A. Erdmann. 2000. 5S ribosomal RNA database Y2K. Nucleic Acids Res. 28, 166-167   DOI
11 Ewing, B. and P. Green. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186-194   DOI   PUBMED
12 Kim, S.J., J. Chun, K.S. Bae, and Y.C. Kim. 2000. Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. nov. Int. J. Syst. Evol. Microbiol. 50, 1641-1647   DOI   ScienceOn
13 Thompson, H., M.J. Saunders, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680   DOI
14 Lee, J.S., S.J. Jin, and H.S. Kang. 2001. Molecular organization of the ribosomal RNA transcription unit and the phylogenetic study of Zymomonas mobilis ZM4. Mol. Cells 11, 68-74   PUBMED