Browse > Article

A Comparison of the Phenotypic and Genetic Stability of Recombinant Trichoderma spp. Generated by Protoplast- and Agrobacterium-Mediated Transformation  

Cardoza Rosa Elena (Spanish-Portuguese Center of Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, University of Leon, Campus of Ponferrada, Superior and Technical University College of Agricultural Engineers, Area of Microbiology)
Vizcaino Juan Antonio (Spanish-Portuguese Center of Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca)
Hermosa Maria Rosa (Spanish-Portuguese Center of Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca)
Monte Enrique (Spanish-Portuguese Center of Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca)
Gutierrez Santiago (University of Leon, Campus of Ponferrada, Superior and Technical University College of Agricultural Engineers, Area of Microbiology)
Publication Information
Journal of Microbiology / v.44, no.4, 2006 , pp. 383-395 More about this Journal
Abstract
Four different Trichoderma strains, T. harzianum CECT 2413, T. asperellum T53, T. atroviride T11 and T. longibrachiatum T52, which represent three of the four sections contained in this genus, were transformed by two different techniques: a protocol based on the isolation of protoplasts and a protocol based on Agrobacterium-mediated transformation. Both methods were set up using hygromycin B or phleomycin resistance as the selection markers. Using these techniques, we obtained phenotypically stable transformants of these four different strains. The highest transformation efficiencies were obtained with the T. longibrachiatum T52 strain: 65-70 $transformants/{\mu}g$ DNA when transformed with the plasmid pAN7-1 (hygromycin B resistance) and 280 $transformants/l0^7$ spores when the Agrobacterium-mediated transformation was performed with the plasmid pUR5750 (hygromycin B resistance). Overall, the genetic analysis of the transform ants showed that some of the strains integrated and maintained the transforming DNA in their genome throughout the entire transformation and selection process. In other cases, the integrated DNA was lost.
Keywords
Trichoderma transformation; phenotypic stability; genetic stability;
Citations & Related Records

Times Cited By Web Of Science : 13  (Related Records In Web of Science)
Times Cited By SCOPUS : 13
연도 인용수 순위
1 Harman, G.E. 2000. Myths and dogmas of biocontrol. Changes in percpetions derived from research on Trichoderma harzianum T-22. Plant Dis. 84, 3777-393
2 Hooykaas, P.J.J., C. Roobol, and R.A. Schilperoort. 1979. Regulation of the transfer of Ti-plasmids of Agrobacterium tumefaciens. J. Gen. Microbiol. 110, 99-109   DOI
3 Lazo, G.R., P.A. Stein, and R.A. Ludwig. 1991. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9, 963-967   DOI
4 Monte, E. 2001. Editorial paper: Understanding Trichoderma: Between agricultural biotechnology and microbial ecology. Int. Microbiol. 4, 1-4
5 Mozo, T. and P.J. Hooykaas. 1991. Electroporation of megaplasmids into Agrobacterium. Plant Mol. Biol. 16, 917-918   DOI
6 Sivasithamparam, K.Y. and E.L. Ghisalberti. 1998. Secondary metabolism in Trichoderma and Gliocladium, p.139-191. In C.P. Kubicek and G.E. Harman (eds.), Trichoderma and Gliocladium, Vol 2. Taylor and Francis Ltd., London, UK
7 Specht, C.A., C.C. DiRusso, C.P. Novotny, and R.C. Ullrich 1982. A method for extracting high-molecular weight deoxyribonucleic acid from fungi. Anal. Biochem. 119, 158-163   DOI   ScienceOn
8 Benítez, T., M.C. Limón, J. Delgado-Jarana, and M. Rey. 1998. Glucanolytic and other enzymes and their genes, p.101-127. In C.P. Kubicek and G.E. Harman (eds.), Trichoderma and Gliocladium, Vol 2. Taylor and Francis Ltd., London, UK
9 Delgado-Jarana, J., A.M. Rincon, and T. Benitez. 2002. Aspartyl protease from Trichoderma harzianum CECT 2431: cloning and characterization. Microbiology 148, 1305-1315   DOI
10 Balance, D.J., F.P. Buxton, and G. Turner. 1983. Transformation of Aspergillus nidulans by the orotidine-5-phosphate decarboxylase gene of Neurospora crassa. Biochem. Biophys. Res. Commun. 112, 284-289   DOI   ScienceOn
11 Hazell, B.W., V.S. Teo, J.R. Bradner, P.L. Bergquist, and K.M. Nevalainen. 2000. Rapid transformation of high cellulaseproducing mutant strains of Trichoderma reesei by microprojectile bombarment. Lett. Appl. Microbiol. 30, 282-286   DOI   ScienceOn
12 Harman, G.E., C.R. Howell, A. Viterbo, I. Chet, and M. Lorito. 2004. Trichoderma species opportunistic, avirulent plant symbionts. Nature Rev. 2, 43-56   DOI   ScienceOn
13 Teo, V.S., P.L. Bergquist, and K.M. Nevalainen. 2002. Biolistic transformation of Trichoderma reesei using the Bio-Rad seven barrels Hepta adaptor system. J. Microbiol. Methods 51, 393-399   DOI   ScienceOn
14 Hinnen, A., J.B. Hicks, and G.R. Fink. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75, 1929-1933
15 Queener, S.W., T.D. Ingolia, P.L. Skatrud, J.L. Chapman, and K.R. Kaster. 1985. A system for genetic transformation of Cephalosporium acremonium. Microbiology 468-472
16 De Groot, M.J., P. Bundock, P.J. Hooykaas, and A.G. Beijersbergen. 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 16, 839-842   DOI   ScienceOn
17 Gutierrez, S., J. Velasco, A.T. Marcos, F.J. Fernández, F. Fierro, J.L. Barredo, B. Diez, and J.F. Martin. 1997. Expression of the cefG is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Appl. Microbiol. Biotechnol. 48, 606-614   DOI
18 Lorito, M., C.K. Hayes, A. Di Pietro, and G.E. Harman. 1993. Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr. Genet. 24, 349-356   DOI
19 Howell, C.R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Dis. 87, 4-10   DOI   ScienceOn
20 Margollez-Clark, E., C.K. Hayes, G.E. Harman, and M. Penttila. 1996. Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei. Appl. Environ. Microbiol. 62, 2145-2151
21 Hermosa, M.R., I. Grondona, E.A. Iturriaga, J.M. Diaz- Mínguez, C. Castro, E. Monte, and I. Garcia-Acha. 2000. Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl. Environ. Microbiol. 66, 1890-1898   DOI
22 Lorito, M. 1998. Chitinolytic enzymes and their genes, p.73- 79. In C.P. Kubicek and G.E. Harman (eds.), Trichoderma and Gliocladium, vol 2. Taylor and Francis Ltd., London, UK
23 Yelton, M.M., J.E. Hamer, and W.E. Timberlake. 1987. Transformation of Aspergillus nidulans by using a trpC plasmid. Proc. Natl. Acad. Sci. USA 81, 1470-1474
24 Zeilinger, S. 2004. Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Curr. Genet. 45, 54-60   DOI
25 Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA
26 Herrera-Estrella, A., G.H. Goldman, and M. Van Montagu. 1990. High-efficiency transformation system for the biocontrol agents, Trichoderma spp. Mol. Microbiol. 4, 839-843   DOI   ScienceOn
27 Punt, P.J., R.P. Oliver, M.A. Dingemanse, P.H. Pouwels, and C.A.M.J.J. van den Hondel. 1987. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56, 117-124   DOI   ScienceOn
28 Sanchez-Torres, P., R. Gonzalez, J.A. Perez-Gonzalez, L. Gonzalez-Candelas, and D. Ramon. 1994. Development of a transformation system for Trichoderma longibrachiatum and its use for constructing multicopy transformants for the egl1 gene. Appl. Microbiol. Biotechnol. 41, 440-446
29 Vizcaino, J.A., R.E. Cardoza, M. Hauser, M.R. Hermosa, M. Rey, A. Llobell, J.M. Becker, S. Gutierrez, and E. Monte. 2006. ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum. Fungal Genet. Biol. 43, 234-246   DOI   ScienceOn
30 Cantoral, J.M., B. Díez, J.L. Barredo, E. Alvarez, and J.F. Martín. 1987. High frequency transformation of Penicillium chrysogenum. Bio. Technol. 5, 494-497   DOI
31 Vicente, M.F., A. Cabello, A. Platas, M.T. Basilio, S. Diez, and R.A. Dreikorn. 2001. Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J. Appl. Microbiol. 91, 806-813   DOI   ScienceOn
32 Mishra, N.C. 1985. Gene transfer in fungi. Adv. Genet. 23, 73-178   DOI
33 Mohr, G. and K. Esser. 1990. Improved transformation frequency and heterologous promoter recognition in Aspergillus niger. Appl. Microbiol. Biotechnol. 34, 63-70
34 Penttila, M., H. Nevalainen, M. Ratto, E. Salminen, and J. Knowles. 1987. A versatile transformation system for the celluylolytic filamentous fungus Trichoderma reesei. Gene 61, 155-164   DOI   ScienceOn
35 Vizcaino, J.A., L. Sanz, A. Basilio, F. Vicente, S. Gutierrez, M.R. Hermosa, and E. y Monte. 2005. Screening of antiantimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycol. Res. 109, 1397-1406   DOI   ScienceOn
36 Sivan, A., T.E. Stasz, M. Hemmat, C.K. Hayes, and G.E. Harman, 1992. Transformation of Trichoderma spp. with plasmids coferring hygromycin B resistance. Mycologia 84, 687-694   DOI
37 Beri, R.K. and G. Turner. 1987. Transformation of Penicillium chrysogenum using the Aspergillus nidulans amdS gene as a dominant selective marker. Curr. Genet. 11, 639-641   DOI
38 Ramboseck, J.A. and J. Leach. 1987. Recombinant DNA in filamentous fungi: progress and prospects. Crit. Rev. Biotechnol. 6, 357-93   DOI