Browse > Article

Room Temperature Ionic Liquids as Replacements for Conventional Solvents - A Review  

Marsh, Kenneth N. (Department of Chemical and Process Engineering, University of Canterbury)
Deev, Alex (Department of Chemical and Process Engineering, University of Canterbury)
Wu, Alex C-T. (Department of Chemical and Process Engineering, University of Canterbury)
Tran, Emma (Department of Chemical and Process Engineering, University of Canterbury)
Klamt, A. (Cosmologic)
Publication Information
Korean Journal of Chemical Engineering / v.19, no.3, 2002 , pp. 357-362 More about this Journal
Room temperature ionic liquids are salts that are liquids at ambient termperature. They are excellent solvents for a broad range of polar organic compounds and they show partial miscibility with aromatic hydrocarbons. Typical room temperature ionic liquids have a stable liquid range of over 300K and have a very low vapor pressure at room temperature. Ionic liquids that are not hydrolyzed show a wide range of solubility in water. These unique properties have suggested that they might be useflu as environmentally benign solvents that could replace volatile organic compounds (VOC). By varying the length and branching of the alkane chains of the cationic core and the anionic precusor, the solvent properties of ionic liquids should be able to be tailored to meet the requirements of specific applications to create and almost infinitely set of "designer solvents". A review of recent applications of ionic liquids is presented along with some results of measurements of liquid-liquid equilibria and parition coefficients with alcohols. The results are compared with predictions based on quantum mechanic calculations.
Ionic Liquids; Liquid-Liquid Equilibria; Prediction; Quantum Chemical Calculation Calculations
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 191  (Related Records In Web of Science)
Times Cited By SCOPUS : 161
연도 인용수 순위
1 Anthony, J. L., Maginn, E. J. and Brennecke, J. F., 'Solution hermodynamics of Imidazolium Based Ionic Liquids and Water,' J. Phys. Chem. B, 105, 10942 (2001)   DOI   ScienceOn
2 Blanchard, L.A., Gu, Z. and Brennecke, J. F., “High Pressure Phase ehavior of Ionic Liquids/CO2 Systems,” J. Phys. Chem. B, 105, 2437 (2001)   DOI   ScienceOn
3 Kaufmann, D. E., Nouroozian, M. and Henze, H., 'Molten Salts as an Efficient Medium for Palladium-Catalysed C-C Coupling Reactions,' Synlett, 1091 (1996)
4 Seddon, K. R. Private Communication (2001)
5 Suarez, P.A. Z., Einoft, S., Dullius, J. E. L., de Souza, R. F. and Dupont, J., 'Synthesis and Physical-Chemical Properties of Ionic Liquids Based on 1-n-Butyl-3-Methylimidazolium Cation,' J. Chim. Phys. Phys.-Chim. Biol., 95, 1626 (1998)   DOI   ScienceOn
6 Welton, T., 'Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis,' Chem. Rev., 99, 2071 (1999)   DOI   PUBMED   ScienceOn
7 Welton, T. private communication (2000)
8 Wong, D. S.H., Chen, J. P., Chang, J. M. and Chou, C.H., 'Phase Equilibria of Water and Ionic Liquids [emim][PF6] and [bmim][PF6],' Fluid Phase Equilib. in press (2002)
9 Müller, L.A., DuPont, J. and De Souza, R. F., 'Two-phase Catalytic NBR Hydrogenation by RuHCl(CO)(PCy3)2 Immobilized in 1- Butyl-3- methylimidazolium Tetrafluoroborate Molten Salt,” Macromol. Rapid Communun., 19, 409 (1998)   DOI   ScienceOn
10 Ngo, H. L., LeCompte, K., Hargens, L. and McEwen, A. B., 'Thermal Properties of Imidazolium Ionic Liquids,' Thermochim. Acta, 357- 358, 97 (2000)   DOI   ScienceOn
11 Huddleston, J.G., Willauer, H.D., Swatloski, R. P., Visser, A. E. and Rogers, R.D., 'Room Temperature Ionic Liquids as Novel Media for Clean Liquid- Liquid Extraction,' Chem. Commun., 1765 (1998)
12 Armstrong, D.W., He, L. and Liu, Y., 'Examination of Ionic Liquids and Their Interaction with Molecules, When Used as Stationary Phases in Gas Chromatography,' Anal. Chem., 71, 3873 (1999)   DOI   ScienceOn
13 Bônhote, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K. and Graetzel, M., 'Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts,' Inorg. Chem., 35, 1168 (1996).   DOI   ScienceOn
14 Fuller, J., Carlin, R. T. and Osteryoung, R.A., 'The Room Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate: Electrochemical Couples and Physical Properties,' J. Electrochem. Soc., 144, 3881 (1997)   DOI   ScienceOn
15 Koel, M., 'Physical and Chemical Properties of Ionic Liquids Based on the Dialkylimidazolium Cation,' Proc. Est. Acad. Sci., Chem., 49, 145 (2000)
16 Boesmann, A., Datsevich, L., Jess, A., Lauter, A., Schmitz, C. and Wasserscheid, P., 'Deep Desulfurization of Diesel Fuel by Extraction with Ionic Liquids,' Chem. Comm., 23, 2494 (2001)
17 Brennecke, J. F. and Maginn, E. J., 'Ionic Liquids: Innovative Fluids for Chemical Processing,' AIChE J., 47, 2384 (2001)   DOI   ScienceOn
18 Silva, S.M., Suarez, P. A. Z., de Souza, R. F. and DuPont, J., 'Selective Linear Dimerization of 1,3-Butadiene by Palladium Compounds Immobilized into 1-n-Butyl-3-methyl Imidazolium Ionic Liquids,' Polmer Bull., 40, 401 (1998)   DOI
19 Blanchard, L.A., Gu, Z. and Brennecke, J. F., 'High Pressure Phase ehavior of Ionic Liquids/CO2 Systems,' J. Phys. Chem. B, 105, 2437 (2001)   DOI   ScienceOn
20 Chauvin, Y., Mussmann, L. and Olivier, H., 'A Novel Class of Versatile Solvents for Two-Phase Catalysis: Hydrogenation, Isomerisation, and Hydroformylation of Alkenes Catalyzed by Rhodium Complexes in Liquid 1,3-Dialkylimidazolium Salts,' Angew. Chem. Int. Ed. Engl., 34, 2698 (1995)   DOI
21 Cull, S.G., Holbrey, J.D., Vargas-Mora, V., Seddon, K. R. and Lye, G. J., 'Room-Temperature Ionic Liquids as Replacements for Organic Solvents in Multiphase Bioprocess Operations,' Biotech. Bioeng., 69, 227 (2000)   DOI   ScienceOn
22 Klamt, A. and Eckert, F., 'COSMO-RS: A Novel and Efficient Method for the a priori Prediction of the Thermophysical Data of Liquids,' Fluid Phase Equilib., 172, 43 (2000)   DOI   ScienceOn
23 Bates, E.D., Mayton, R. D., Ntai, I. and Davis, J.H., 'CO2 Capture by a Task-Specific Ionic Liquid,' J. Am. Chem. Soc., 124, 926 (2002)   DOI   ScienceOn
24 Wasserscheid, P. and Keim, W., 'Ionic Liquids-New 'Solutions' for Transition Metal Catalysis,' Agnew. Chem. Int. Ed., 39, 3772 (2000)   DOI   ScienceOn
25 Liao, Q. and Hussey, L., 'Densities, Viscosities, and Conductivities of Mixtures of Benzene with the Lewis Acidic Aluminium Chloride+1- Methyl-3-ethylimidazolium Chloride Molten Salt,” J. Chem. Eng. Data, 41, 1126 (1996)   DOI   ScienceOn
26 Seddon, K.R., Stark, A. and Torres, M. J., 'Influence of Chloride, Water, and Organic Solvents on the Physical Properties of Ionic Liquids,' Pure Appl. Chem., 72, 2275 (2000)   DOI   ScienceOn
27 Fannin, A. A., Jr., Floreani, D.A., King, L.A., Landers, J. S., Piersma, B. J., Stech, D. J., Vaughn, R. L., Wilkes, J. S. and Williams, J. L., 'Properties of 1,3-Dialkylimidazolium Chloride-Aluminium Chloride Ionic Liquids. 2. Phase Transitions, Densities, Electrical Conductivities, and Viscosities,' J. Phys. Chem., 88, 2614 (1984)   DOI
28 Blanchard, L.A. and Brennecke, J. F., 'Recovery of Organic Products from Ionic Liquids using Supercritical Carbon Dioxide,' Ind. Eng. Chem. Res., 40, 287 (2001)
29 Suarez, P.A. Z., Dullius, J. E. L., Einoft, S., de Souza, R. F. and Dupont, J., 'Two-Phase Catalytic Hydrogenation of Olefins by Ru(II) and Co(II) Complexes Dissolved in 1-n-Butyl-3-methyl Imidazolium tetrafluoroborate Ionic Liquid,' Inorganica Chimica Acta, 255, 207 (1997)   DOI   ScienceOn
30 Erbeldinger, M., Mesiano, A. J. and Russell, A. J., 'Enzymatic Catalysis of Formation of Z-Aspartame in Ionic Liquid-An Alternative to Enzymatic Catalysis in Organic Solvents,' Biotechnol. Prog., 16, 1129 (2000)   DOI   ScienceOn
31 Huddleston, J.G., Visser, A. E., Reichert, W. M., Willauer, H.D., Broker, G.A. and Rogers, R.D., 'Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation,' Green Chemistry, 3, 156 (2001)   DOI   ScienceOn