Browse > Article
http://dx.doi.org/10.4491/eer.2013.18.4.211

Environmental Applications of Rare-Earth Manganites as Catalysts: A Comparative Study  

Alami, D. (Department of Inorganic Substances Technology, National Techical University "Kharkiv Polytechnic Institute")
Publication Information
Environmental Engineering Research / v.18, no.4, 2013 , pp. 211-219 More about this Journal
Abstract
Rare-earth manganites have a great potential for environmental applications based on their chemical and physical properties. The use of rare-earth manganites as catalysts for environmentally essential reactions was reviewed. Artificial neural networks were used to assess the catalytic activity in oxidation reactions. Relative catalytic activities of the catalysts were further discussed. We concluded that cerium manganite is the most practicable catalyst for technological purposes.
Keywords
Artificial neural networks; Catalytic activity; Enthalpy of formation; Environmental catalysis; Rare-earth manganites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Burden FR. Mapping analytic functions using neural networks. J. Chem. Inf. Comput. Sci. 1994;34:1229-1231.   DOI   ScienceOn
2 Sha W, Edwards KL. The use of artificial neural networks in materials science based research. Mater. Des. 2007;28:1747-1752.   DOI   ScienceOn
3 Dash S, Singh Z, Parida SC, Venugopal V. Thermodynamic studies on $Rb_2ThO_3$(s). J. Alloys Compd. 2005;398:219-227.   DOI   ScienceOn
4 Diaconescu R, Dumitriu E. Applications of artificial neural networks in environmental catalysis. Environ. Eng. Manag. J. 2005;4:473-498.
5 Rothenberg G. Data mining in catalysis: separating knowledge from garbage. Catal. Today 2008;137:2-10.   DOI   ScienceOn
6 Hecht-Nielsen R. Replicator neural networks for universal optimal source coding. Science 1995;269:1860-1863.   DOI
7 Sontag ED. Feed forward nets for interpolation and classification. J. Comput. Sys. Sci. 1992;45:20-48.   DOI   ScienceOn
8 Morss LR, Konings RJM. Thermochemistry of binary rare earth oxides. Dordrecht: Kluwer Academic Publishers, 2006.
9 Available from: http://www.alibaba.com.
10 Centi G, Ciambelli P, Perathoner S, Russo P. Environmental catalysis: trends and outlook. Catal. Today 2002;75:3-15.   DOI   ScienceOn
11 Pena MA, Fierro JL. Chemical structures and performance of perovskite oxides. Chem. Rev. 2001;101:1981-2018.   DOI   ScienceOn
12 Abordeoaei L, Papp HI. Perovskite utilisation as catalysts in NO reduction by SCR-HC in absence of $O_2$. Environ. Eng. Manag. J. 2004;3:755-760.
13 Ran R, Wu X, Quan C, Weng D. Effect of strontium and cerium doping on the structural and catalytic properties of $PrMnO_3$ oxides. Solid State Ion. 2005;176:965-971.   DOI   ScienceOn
14 Tang X, Li Y, Huang X, et al. $MnO_xCeO_2$ mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Appl. Catal. B 2006;62:265-273.   DOI   ScienceOn
15 Liu J, Zhao Z, Xu C. Research progress in catalysts for removal of soot particulates from diesel engines. Chin. J. Catal. 2004;25:673-680.
16 Raj SL, Srinivasan V. Decomposition of nitrous oxide on rare earth manganites. J. Catal. 1980;65:121-126.   DOI   ScienceOn
17 Lombardo EA, Ulla MA. Perovskite oxides in catalysis: past, present and future. Res. Chem. Intermed. 1998;24:581-592.   DOI   ScienceOn
18 Arai H, Yamada T, Eguchi K, Seiyama T. Catalytic combustion of methane over various perovskite-type oxides. Appl. Catal. 1986;26:265-276.   DOI   ScienceOn
19 Lintz HG, Wittstock K. Catalytic combustion of solvent containing air on base metal catalysts. Catal. Today 1996;29:457-461.   DOI   ScienceOn
20 Luna AJ, Rojas LOA, Melo DMA, Benachour M, Sousa JF. Total catalytic wet oxidation of phenol and its chlorinated derivates with $MnO_2$/$CeO_2$ catalyst in a slurry reactor. Braz. J. Chem. Eng. 2009;26:493-502.   DOI
21 Zhou G, Shah PR, Gorte RJ. A study of cerium-manganese mixed oxides for oxidation catalysis. Catal. Lett. 2008;120:191-197.   DOI
22 Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011;3:546-550.   DOI   ScienceOn
23 Baerns M, Holena M. Combinatorial development of solid catalytic materials: design of high-throughput experiments, data analysis, data mining. London: Imperial College Press; 2009.
24 Duffy JA, Ingram MD. Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses. J. Am. Ceram. Soc. 1971;93:6448-6454.
25 Smith W. An acidity scale for binary oxides. J. Chem. Educ. 1987;64:480-481.   DOI
26 Portier J, Poizot P, Campet G, Subramanian MA, Tarascon JM. Acid-base behavior of oxides and their electronic structure. Solid State Sci. 2003;5:695-699.   DOI   ScienceOn
27 Jain AK, Mao J, Mohiuddin KM. Artificial neural networks: a tutorial. IEEE Computer 1996;29:31-44.
28 Buhmann MD. Radial basis functions: theory and implementations. New York: Cambridge University Press; 2003.
29 Hassoun MH. Fundamentals of artificial neural networks. Cambridge: MIT Press; 1995.
30 Sridhar DV, Seagrave RC, Bartlett EB. Process modeling using stacked neural networks. AlChE J. 1996;42:2529-2539.   DOI   ScienceOn
31 Tompos A, Margitfalvi JL, Tfirst E, Vegvari L. Information mining using artificial neural networks and "holographic research strategy". Appl. Catal. A 2003;254:161-168.   DOI   ScienceOn
32 Spinicci R, Faticanti M, Marini P, De Rossi S, Porta P. Catalytic activity of $LaMnO_3$ and $LaCoO_3$ perovskites towards VOCs combustion. J. Mol. Catal. A Chem. 2003;197:147-155.   DOI   ScienceOn
33 Laberty C, Navrotsky A, Rao CN, Alphonse P. Energetics of rare earth manganese perovskites A1-xA'xMn$O_3$ (A=La, Nd, Y and A'=Sr, La) systems. J. Solid State Chem. 1999;145:77-87.   DOI   ScienceOn
34 Uemura S, Mitsudo T, Haruta M, Inui T. Frontiers and tasks of catalysis towards the next century. Proceedings of the International Symposium in honour of Professor Tomoyuki Inui. Utrecht: VSP; 1998.
35 Isupova LA, Sadykov VA, Solovyova LP, et al. Monolith perovskite catalysts of honeycomb structure for fuel combustion. Stud. Surf. Sci. Catal. 1995;91:637-645.   DOI
36 Chirila LM, Papp H, Suprun W, Balasanian I. Synthesis, characterization and catalytic reduction of $NO_x$ emissions over $LaMnO_3$ perovskite. Environ. Eng. Manag. J. 2007;6:549-553.
37 Yonghua C, Futai M, Hui L. Catalytic properties of rare earth manganites and related compounds. React. Kinet. Catal. Lett. 1988;37:37-42.   DOI
38 Liu Y, Dai H, Du Y, et al. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous $LaMnO_3$ with nanovoid skeletons for the combustion of toluene. J. Catal. 2012;287:149-160.   DOI   ScienceOn
39 Li C, Lin Y. Methanol partial oxidation over palladium-, platinum-, and rhodium-integrated $LaMnO_3$ perovskites. Appl. Catal. B 2011;107:284-293.   DOI   ScienceOn
40 Zhang C, Wang C, Zhan W, et al. Catalytic oxidation of vinyl chloride emission over $LaMnO_3$ and $LaB_{0.2}Mn_{0.8}O_3$ (B=Co, Ni, Fe) catalysts. Appl. Catal. B 2013;129:509-516.   DOI   ScienceOn
41 Voorhoeve RJ, Johnson DW Jr, Remeika JP, Gallagher PK. Perovskite oxides: materials science in catalysis. Science 1977;195:827-833.   DOI   ScienceOn
42 Rezlescu N, Rezlescu E, Doroftei C, Popa PD, Ignat M. Nanostructured lanthanum manganite perovskites in catalyst applications. Dig. J. Nanomater. Biostruct. 2013;8:581-587.
43 Arakawa T, Yoshida A, Shiokawa J. The catalytic activity of rare earth manganites. Mater. Res. Bull. 1980;15:269-273.   DOI   ScienceOn
44 Yamazoe N, Teraoka Y. Oxidation catalysis of perovskites: relationships to bulk structure and composition (valency, defect, etc.). Catal. Today 1990;8:175-199.   DOI   ScienceOn
45 Kalashnikova AM, Pisarev RV. Electronic structure of hexagonal rare-earth manganites $RMnO_3$. J. Exp. Theor. Phys. Lett. 2003;78:143-147.   DOI
46 Moro-Oka Y, Morikawa Y, Ozaki A. Regularity in the catalytic properties of metal oxides in hydrocarbon oxidation. J. Catal. 1967;7:23-32.   DOI   ScienceOn
47 Vijh AK, Lenfant P. Significance of heterogeneous catalysis of certain oxidation reactions by oxides in relation to their heats of formation. Can. J. Chem. 1971;49:809-812.
48 Aronson S. Estimation of the heat of formation of refractory mixed oxides. J. Nucl. Mater. 1982;107:343-346.   DOI   ScienceOn
49 Vonka P, Leitner J. A method for the estimation of the enthalpy of formation of mixed oxides in $Al_2O_3$-$Ln_2O_3$ systems. J. Solid State Chem. 2009;182:744-748.   DOI   ScienceOn
50 Yokokawa H, Kawada T, Dokiya M. Thermodynamic regularities in perovskite and $K_2NiF_4$ compounds. J. Am. Ceram. Soc. 1989;72:152-153.   DOI   ScienceOn
51 Stolen S, Grande T. Chemical thermodynamics of materials: macroscopic and microscopic aspects. Hoboken: John Wiley and Sons; 2004.