1 |
Hoshino Y, Koketsu Y. A repeatability assessment of sows mated 4-6 days after weaning in breeding herds. Anim Reprod Sci 2008;108:22-8. https://doi.org/10.1016/j.anireprosci.2007. 06.029
DOI
|
2 |
Tummaruk P, Tantasuparuk W, Techakumphu M, Kunavongkrit A. Influence of repeat-service and weaning-to-first-service interval on farrowing proportion of gilts and sows. Prev Vet Med 2010;96:194-200. https://doi.org/10.1016/j.prevetmed. 2010.06.003
DOI
|
3 |
Weitze KF, Wagner-Rietschel H, Waberski D, Richte L, Krieter J. The onset of heat after weaning, heat duration, and ovulation as major factors in AI timing in sows. Reprod Domest Anim 1994;29:433-43. https://doi.org/10.1111/j.1439-0531.1994.tb00590.x
DOI
|
4 |
Kemp B, Soede NM. Relationship of weaning-to-estrus interval to timing of ovulation and fertilization in sows. J Anim Sci 1996;74:944-9. https://doi.org/10.2527/1996.745944x
DOI
|
5 |
Berckmans D, Guarino M. From the Editors: Precision livestock farming for the global livestock sector. Anim Front 2017;7:4-5. https://doi.org/10.2527/af.2017.0101
DOI
|
6 |
Morota G, Ventura RV, Silva FF, Koyama M, Fernando SC. Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture. J Anim Sci 2018;96:1540-50. https://doi.org/10.1093/jas/sky014
DOI
|
7 |
Soede NM, Wetzels CCH, Zondag W, de Koning MAI, Kemp B. Effects of time of insemination relative to ovulation, as determined by ultrasonography, on fertilization rate and accessory sperm count in sows. J Reprod Fertil 1995;104:99-106. https://doi.org/10.1530/jrf.0.1040099
DOI
|
8 |
Nissen AK, Soede NM, Hyttel P, Schmidt M, D'Hoore L. The influence of time of insemination relative to time of ovulation on farrowing frequency and litter size in sows, as investigated by ultrasonography. Theriogenology 1997;47:1571-82. https://doi.org/10.1016/S0093-691X(97)00162-3
DOI
|
9 |
Soede M, Helmond FA, Kemp B. Periovulatory profiles of oestradiol, LH and progesterone in relation to oestrus and embryo mortality in multiparous sows using transrectal ultrasonography to detect ovulation. J Reprod Fertil 1994;101:633-41. https://doi.org/10.1530/jrf.0.1010633
DOI
|
10 |
Kauffold J, Althouse GC. An update on the use of B-mode ultrasonography in female pig reproduction. Theriogenology 2007;67:901-11. https://doi.org/10.1016/j.theriogenology.2006. 12.005
DOI
|
11 |
Waberski D, Kunz-Schmidt A, Borchardt Neto G, Richter L, Weitze KF. Real-time ultrasound diagnosis of ovulation and ovarian cysts in sows and its impact on artificial insemination efficiency. J Anim Sci 2000;77(Suppl):E1-8. https://doi.org/10.2527/jas2000.00218812007700ES0037x
|
12 |
Scolari SC, Clark SG, Knox RV, Tamassia M. Vulvar skin temperature changes significantly during estrus in swine as determined by digital infrared thermography. J Swine Health Prod 2011;19:151-5.
|
13 |
Rezac P, Kukla R, Poschl M. Effect of sow parity on vaginal electrical impedance. Anim Reprod Sci 2002;72:223-34. https://doi.org/10.1016/S0378-4320(02)00089-1
DOI
|
14 |
Stokhof S, Soede NM, Kemp B. Vaginal mucus conductivity as measured by the Walsmeta MKIV does not accurately predict the moment of ovulation or the optimum time for insemination in sows. Anim Reprod Sci 1996;41:305-10. https://doi.org/10.1016/0378-4320(95)01454-3
DOI
|
15 |
Rezac P, Poschl M, Krivanek I. Effect of probe location on changes in vaginal electrical impedance during the porcine estrous cycle. Theriogenology 2003;59:1325-34. https://doi.org/10.1016/S0093-691X(02)01168-8
DOI
|
16 |
Simoes VG, Lyazrhi F, Picard-Hagen N, Gayrard V, Martineau GP, Waret-Szkuta A. Variations in the vulvar temperature of sows during proestrus and estrus as determined by infrared thermography and its relation to ovulation. Theriogenology 2014;82:1080-5. https://doi.org/10.1016/j.theriogenology.2014.07.017
DOI
|
17 |
Soerensen DD, Sonnik C, James BM, Pedersen LJ. Determining the emissivity of pig skin for accurate infrared thermography. Comput Electron Agric 2014;109:52-8. https://doi.org/10.1016/j.compag.2014.09.003
DOI
|
18 |
Abrams RM, Thatcher WW, Bazer FW, Wilcox CJ. Effect of estradiol-17beta on vaginal thermal conductance in cattle. J Dairy Sci 1973;56:1058-62. https://doi.org/10.3168/jds.S0022-0302(73)85305-6
DOI
|
19 |
Sterning M. Oestrous symptoms in primiparous sows. 2. Factors influencing the duration and intensity of external oestrous symptoms. Anim Reprod Sci 1995;40:165-74. https://doi.org/10.1016/0378-4320(95)01410-2
DOI
|
20 |
Langendijk P, van den Brand H, Soede NM, Kemp B. Effect of boar contact on follicular development and on estrus expression after weaning in primiparous sows. Theriogenology 2000;54:1295-303. https://doi.org/10.1016/S0093-691X(00) 00436-2
DOI
|
21 |
Sykes DJ, Couvillion JS, Cromiak A, et al. The use of digital infrared thermal imaging to detect estrus in gilts. Theriogenology 2012;78:147-52. https://doi.org/10.1016/j.therio genology.2012.01.030
DOI
|
22 |
Cornou C. Automated oestrus detection methods in group housed sows: review of the current methods and perspectives for development. Livest Sci 2006;105:1-11. https://doi.org/10.1016/j.livsci.2006.05.023
DOI
|
23 |
SPSS. IBM Corp. Released. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY, USA: IBM Corp; 2013.
|
24 |
Soede NM, Hazeleger W, Broos J, Kemp B. Vaginal temperature is not related to the time of ovulation in sows. Anim Reprod Sci 1997;47:245-52. https://doi.org/10.1016/S0378- 4320(97)00006-7
DOI
|