Expression of genes related to lipid transport in meat-type ducks divergent for low or high residual feed intake |
Jin, Sihua
(College of Animal Science and Technology, Anhui Agricultural University)
Xu, Yuan (College of Animal Science and Technology, Anhui Agricultural University) Zang, He (College of Animal Science and Technology, Anhui Agricultural University) Yang, Lei (College of Animal Science and Technology, Anhui Agricultural University) Lin, Zhiqiang (Huangshan Qiangying Duck Breeding Co. Ltd.) Li, Yongsheng (Huangshan Qiangying Duck Breeding Co. Ltd.) Geng, Zhaoyu (College of Animal Science and Technology, Anhui Agricultural University) |
1 | Zhuo Z, Lamont SJ, Lee WR, Abasht B. RNA-Seq analysis of abdominal fat reveals differences between modern commercial broiler chickens with high and low feed efficiencies. PLoS One 2015;10:e0135810. https://doi.org/10.1371/journal.pone.0135810 DOI |
2 | Reyer H, Oster M, Magowan E, Dannenberger D, Ponsuksili S, Wimmers K. Strategies towards improved feed efficiency in pigs comprise molecular shifts in hepatic lipid and carbohydrate metabolism. Int J Mol Sci 2017;18: 1674. https://doi.org/10.3390/ijms18081674 DOI |
3 | Sclafani A, Ackroff K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. Am J Physiol Regul Integr Comp Physiol 2012;302:R1119-33. https://doi.org/10.1152/ajpregu.00038.2012 DOI |
4 | Schulze RJ, Drizyte K, Casey CA, McNiven MA. Hepatic lipophagy: New insights into autophagic catabolism of lipid droplets in the liver. Hepatol Commun 2017;1:359-69. https://doi.org/10.1002/hep4.1056 DOI |
5 | Qi Y, Jiang C, Cheng J, et al. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2015;1851:19-29. https://doi.org/10.1016/j.bbalip.2014.04.008 |
6 | Seyer A, Cantiello M, Bertrand-Michel J, et al. Lipidomic and spatio-temporal imaging of fat by mass spectrometry in mice duodenum during lipid digestion. PLoS One 2013;8:e58224. https://doi.org/10.1371/journal.pone.0058224 DOI |
7 | Chai J, Zou L, Li X, et al. Mechanism of bile acid-regulated glucose and lipid metabolism in duodenal-jejunal bypass. Int J Clin Exp Pathol 2015;8:15778-85. |
8 | Armand M, Borel P, Pasquier B, et al. Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am J Physiol 1996;271:G172-83. https://doi.org/10.1152/ajpgi.1996.271.1.G172 |
9 | Drouilhet L, Basso B, Bernadet MD, et al. Improving residual feed intake of mule progeny of Muscovy ducks: genetic parameters and responses to selection with emphasis on carcass composition and fatty liver quality. J Anim Sci 2014;92:4287-96. https://doi.org/10.2527/jas.2014-8064 DOI |
10 | Alford AR, Hegarty RS, Parnell PF, Cacho OJ, Herd RM, Griffith GR. The impact of breeding to reduce residual feed intake on enteric methane emissions from the Australian beef industry. Aust J Exp Agric 2006;46:813-20. https://doi.org/10.1071/EA05300 DOI |
11 | Lee J, Karnuah AB, Rekaya R, Anthony NB, Aggrey SE. Transcriptomic analysis to elucidate the molecular mechanisms that underlie feed efficiency in meat-type chickens. Mol Genet Genomics 2015;290:1673-82. https://doi.org/10.1007/s00438-015-1025-7 DOI |
12 | Mitrofanova D, Dakik P, McAuley M, Medkour Y, Mohammad K, Titorenko VI. Lipid metabolism and transport define longevity of the yeast Saccharomyces cerevisiae. Front Biosci 2018; 23:1166-94. https://doi.org/10.2741/4638 DOI |
13 | Visioli F, Crawford MA, Cunnane S, Rise P, Galli C. Lipid transport, dietary fats, and endogenous lipid synthesis: hypotheses on saturation and competition processes. Nutr Health 2006;18:127-32. https://doi.org/10.1177/026010600601800204 DOI |
14 | Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. J Cell Biol 2015;208:501-12. https://doi.org/10.1083/jcb.201409063 DOI |
15 | Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262 DOI |
16 | Siegerstetter SC, Schmitz-Esser S, Magowan E, et al. Intestinal microbiota profiles associated with low and high residual feed intake in chickens across two geographical locations. PLoS One 2017;12:e0187766. https://doi.org/10.1371/journal.pone.0187766 DOI |
17 | Weber KL, Welly BT, Van Eenennaam AL, et al. Identification of gene networks for residual feed intake in Angus cattle using genomic prediction and RNA-seq. PLoS One 2016;11: e0152274. https://doi.org/10.1371/journal.pone.0152274 DOI |
18 | Zeng T, Huang L, Ren J, et al. Gene expression profiling reveals candidate genes related to residual feed intake in duodenum of laying ducks. J Anim Sci 2017;95:5270-7. https://doi.org/10.2527/jas2017.1714 DOI |
19 | Nafikov RA, Beitz DC. Carbohydrate and lipid metabolism in farm animals. J Nutr 2007;137:702-5. https://doi.org/10.1093/jn/137.3.702 DOI |
20 | Wang Y, Wang S, Huang M. Structure and enzymatic activities of human serum albumin. Curr Pharm Des 2015;21:1831-6. https://doi.org/10.2174/1381612821666150302113906 DOI |
21 | Jin Q, Ren Y, Wang M, et al. Novel function of FAXDC2 in megakaryopoiesis. Blood Cancer J 2016;6:e478. https://doi.org/10.1038/bcj.2016.87 DOI |
22 | Guo L, Zhang X, Zhou D, Okunade AL, Su X. Stereospecificity of fatty acid 2-hydroxylase and differential functions of 2-hydroxy fatty acid enantiomers. J Lipid Res 2012;53:1327-35. https://doi.org/10.1194/jlr.M025742 DOI |
23 | Yi G, Yuan J, Bi H, Yan W, Yang N, Qu L. In-depth duodenal transcriptome survey in chickens with divergent feed efficiency using RNA-Seq. PLoS One 2015;10:e0136765. https://doi.org/10.1371/journal.pone.0136765 DOI |
24 | Ramirez de Molina A, Gallego-Ortega D, Sarmentero-Estrada J, et al. Choline kinase as a link connecting phospholipid metabolism and cell cycle regulation: implications in cancer therapy. Int J Biochem Cell Biol 2008;40:1753-63. https://doi.org/10.1016/j.biocel.2008.01.013 DOI |
25 | Takada D, Ezura Y, Ono S, et al. Apolipoprotein H variant modifies plasma triglyceride phenotype in familial hypercholesterolemia: a molecular study in an eight-generation hyperlipidemic family. J Atheroscler Thromb 2003;10:79-84. https://doi.org/10.5551/jat.10.79 DOI |
26 | Mukiibi R, Vinsky M, Keogh KA, et al. Transcriptome analyses reveal reduced hepatic lipid synthesis and accumulation in more feed efficient beef cattle. Sci Rep 2018;8:7303. https://doi.org/10.1038/s41598-018-25605-3 DOI |
27 | Ekholm O, Jaikishan S, Lonnfors M, Nyholm TK, Slotte JP. Membrane bilayer properties of sphingomyelins with amide-linked 2- or 3-hydroxylated fatty acids. Biochim Biophys Acta Biomembr 2011;1808:727-32. https://doi.org/10.1016/j.bbamem.2010.12.006 DOI |
28 | Smith J, Su X, El-Maghrabi R, Stahl PD, Abumrad NA. Opposite regulation of CD36 ubiquitination by fatty acids and insulin: effects on fatty acid uptake. J Biol Chem 2008;283: 13578-85. https://doi.org/10.1074/jbc.M800008200 DOI |
29 | Koonen DP, Jacobs RL, Febbraio M, et al. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes 2007;56:2863-71. https://doi.org/10.2337/db07-0907 DOI |
30 | Nassir F, Adewole OL, Brunt EM, Abumrad NA. CD36 deletion reduces VLDL secretion, modulates liver prostaglandins, and exacerbates hepatic steatosis in ob/ob mice. J Lipid Res 2013;54:2988-97. https://doi.org/10.1194/jlr.M037812 DOI |
31 | Coburn CT, Hajri T, Ibrahimi A, Abumrad NA. Role of CD36 in membrane transport and utilization of long-chain fatty acids by different tissues. J Mol Neurosci 2001;16:117-21. https://doi.org/10.1385/JMN:16:2-3:117 DOI |
32 | Tran TT, Poirier H, Clement L, et al. Luminal lipid regulates CD36 levels and downstream signaling to stimulate chylomicron synthesis. J Biol Chem 2011;286:25201-10. https://doi.org/10.1074/jbc.M111.233551 DOI |
33 | Naville D, Duchampt A, Vigier M, et al. Link between intestinal CD36 ligand binding and satiety induced by a high protein diet in mice. PLoS One 2012;7:e30686. https://doi.org/10.1371/journal.pone.0030686 DOI |
34 | Aggrey SE, Karnuah AB, Sebastian B, Anthony NB. Genetic properties of feed efficiency parameters in meat-type chickens. Genet Sel Evol 2010;42:25. https://doi.org/10.1186/1297-9686-42-25 DOI |
35 | Zhang Y, Guo ZB, Xie M, Zhang Z, Hou S. Genetic parameters for residual feed intake in a random population of Pekin duck. Asian-Australas J Anim Sci 2017;30:167-70. https://doi.org/10.5713/ajas.15.0577 DOI |
36 | Koch RM, Swiger LA, Chambers D, Gregory KE. Efficiency of feed use in beef cattle. J Anim Sci 1963;22:486-94. https://doi.org/10.2527/jas1963.222486x DOI |