Browse > Article
http://dx.doi.org/10.5713/ajas.2010.90619

Comparison of Bioavailability of Organic Selenium Sources in Finishing Pigs  

Jang, Y.D. (Department of Agricultural Biotechnology, Seoul National University)
Choi, H.B. (Department of Agricultural Biotechnology, Seoul National University)
Durosoy, S. (Pancosma S.A.)
Schlegel, P. (Pancosma S.A.)
Choi, B.R. (Milae ML Co., Ltd.)
Kim, Y.Y. (Department of Agricultural Biotechnology, Seoul National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.23, no.7, 2010 , pp. 931-936 More about this Journal
Abstract
This experiment was conducted to evaluate the bioavailability of different organic selenium (Se) products in finishing pigs. A total of 48 growing pigs, average body weight $47.6kg{\pm}0.05$, were allotted to four different treatments in a randomized complete block (RCB) design in three replicates with four pigs per pen. Three different organic Se products, Se-enriched yeast (treatments A and B) and Se-proteinate (treatment C), were used in conjunction with a basal diet with no added Se as a control treatment. In growing period, pigs were fed the same diet but finishing pigs were fed each treatment diet containing organic Se products for 6 weeks. During the experimental period, feed intake and body weight were measured and blood samples were collected to determine the Se concentration. At the end of this experiment, 3 pigs per treatment were killed and various tissues (loin, liver, kidney, pancreas and spleen) were collected to analyze the Se concentration. The body weight, and average daily feed intake (ADFI) were similar among treatments, but the average daily gain (ADG) was increased on Se-proteinate treatment (p<0.01) and gain-to-feed ratio (G/F ratio) was improved on Se yeast B or Se-proteinate treatment (p<0.01). The tissue Se content was also increased when pigs were fed organic Se sources, and Se was retained efficiently in loin (p<0.01) and kidney (p<0.05) when Se yeast B was provided. The serum Se concentration was increased when organic Se was provided and was higher when pigs were fed Se-proteinate (p<0.01); subsequently liver Se was also higher on Se-proteinate treatment than other treatments. The Se yeast A treatment did not show any increment of Se concentration both in serum and tissues. This result demonstrated that Se retention and bioavailability in finishing pigs were varied by Se products although organic sources were provided. Consequently, each organic Se product should be evaluated before it is used as a supplement in animal feed.
Keywords
Selenium; Se-proteinate; Se-enriched Yeast; Se Retention; Pig;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Thomson, C. D. and M. F. Robinson. 1986. Urinary and fecal excretions and absorption of a large supplement of selenium: superiority of selenate over selenite. Am. J. Clin. Nutr. 44:659-663.
2 Willet, W. 1987. Nutritional epidemiology: issues and challenges. Int. J. Epidemiol. 16:312-317.   DOI
3 Mahan, D. C., T. R. Cline and B. Richert. 1999. Effects of dietary levels of selenium enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics and loin quality. J. Anim. Sci. 77:2172-2179.
4 Mateo, R. D., J. E. Spallholz, R. Elder, I. Yoon and S. W. Kim. 2007. Efficacy of dietary selenium sources on growth and carcass characteristics of growing-finishing pigs fed diets containing high endogenous selenium. J. Anim. Sci. 85:1177-1183.   DOI   ScienceOn
5 NRC. 1998. Nutrient requirements of swine, 10th ed. National Academy Press, Washington, DC.
6 Oh, S. W., R. A. Sunde, A. L. Pope and W. G. Hoekstra. 1976. Glutathione peroxidase response to selenium intake in lambs fed a torula yeast-based, artificial milk. J. Anim. Sci. 42:977-983.
7 Oster, O., G. Schmiedel and W. Prellwitz. 1988. The organ distribution of selenium in German adults. Biol. Trace Elem. Res. 15:23-45.   DOI
8 SAS. 2004. User's guide statistics, SAS Inst. Inc. Cary. NC. 27513.
9 Tian, J. Z., M. S. Yun, W. S. Ju, H. F. Long, J. H. Kim, D. Y. Kil, J. S. Chang, S. B. Cho, Y. Y. Kim and In K. Han. 2006a. Effects of dietary selenium supplementation on growth performance, selenium retention in tissues and nutrient digestibility in growing-finishing pigs. Asian-Aust. J. Anim. Sci. 19:55-60.   과학기술학회마을
10 Tian, J. Z., M. S. Yun, C. S. Kong, L. G. Piao, H. F. Long, J. H. Kim, J. H. Lee, , J. S. Lim, C. H. Kim, Y. Y. Kim and In K. Han. 2006b. Effects of different products and levels of selenium on growth, nutrient digestibility and selenium retention of growing-finishing pigs. Asian-Aust. J. Anim. Sci. 19:61-66.   과학기술학회마을
11 Chu, F. F., R. S. Esworthy and J. H. Doroshow. 1992. Expression of plasma glutathione peroxidase in human liver in addition to kidney, heart, lung, and breast in humans and rodents. Blood 79:3233-3238.
12 Gerhard N. Schrauzer. 2001. Nutritional selenium supplements: product types, quality, and safety. J. Am. Coll. Nutr. 20:1-4.   DOI
13 Kelly, M. P. and R. F. Power. 1995. Fractionation and identification of the major selenium compounds in selenized yeast. J. Dairy Sci. 78(Suppl. I):237.
14 Kim, Y. Y. and D. C. Mahan. 2001a. Effects of high dietary levels of selenium-enriched yeast and sodium selenite on macro and micro mineral metabolism in grower-finisher swine. Asian-Aust. J. Anim. Sci. 14:243-249.   DOI
15 Kim, Y. Y. and D. C. Mahan. 2001b. Prolonged feeding of high dietary levels of organic and inorganic selenium to gilts from 25 kg body weight through one parity. J. Anim. Sci. 79:956-966.
16 Kim, Y. Y. and D. C. Mahan. 2001c. Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs. J. Anim. Sci. 79:942-948.
17 Kim, Y. Y. 2000. Differences in biological activity and metabolism of selenium due to its chemical form. J. Anim. Sci. Technol. (Kor.) 42(6):835-848.
18 Milan Ihnat. 1989. Occurrence and distribution of selenium. Boca Raton Fla. CRC Press. p.134.
19 Mahan, D. C., J. H. Brendemuhl, S. D. Carter, L. I. Chiba, T. D. Crenshaw, G. L. Cromwell, C. R. Dove, A. F. Harper, G. M. Hill, G. R. Hollis, S. W. Kim, M. D. Lindemann, C. V. Maxwell, P. S. Miller, J. L. Nelssen, B. T. Richert, L. L. Southern, T. S. Stahly, H. H. Stein, E. van Heugten and J. T. Yen. 2005. Comparison of dietary selenium fed to grower-finisher pigs from various regions of the United States on resulting tissue Se and loin mineral concentrations. J Anim. Sci. 83: 852-857.
20 Mahan, D. C. and Y. Y. Kim. 1999. The role of vitamin and minerals in the production of high quality pork. Asian-Aust. J. Anim. Sci. 12(2):287-294.   DOI   ScienceOn
21 Arthur, J. R. 1992. Selenium metabolism and function. Proceedings of the Nutrition Society of Australia. 17:91-98.
22 Abd El Ghany Hefnawy and J. L. Tortora-Perez. 2010. The importance of selenium and the effects of its deficiency in animal health. Small Rumin. Res. 89(2):185-192.   DOI   ScienceOn
23 AOAC. 1995. Official methods of analysis (16th ed). Association of official analytical chemists. Washington, DC.