Browse > Article

MMTS, a New Subfamily of Tc1-like Transposons  

Ahn, Sang Jung (Department of Biotechnology, Pukyong National University)
Kim, Moo-Sang (Department of Aquatic Life Medicine, Pukyong National University)
Jang, Jae Ho (Department of Biotechnology, Pukyong National University)
Lim, Sang Uk (Department of Biotechnology, Pukyong National University)
Lee, Hyung Ho (Department of Biotechnology, Pukyong National University)
Abstract
A novel Tc1-like transposable element has been identified as a new DNA transposon in the mud loach, Misgurnus mizolepis. The M. mizolepis Tc1-like transposon (MMTS) is comprised of inverted terminal repeats and a single gene that codes Tc1-like transposase. The deduced amino acid sequence of the transposase-encoding region of MMTS transposon contains motifs including DDE motif, which was previously recognized in other Tc1-like transposons. However, putative MMTS transposase has only 34-37% identity with well-known Tc1, PPTN, and S elements at the amino acid level. In dot-hybridization analysis used to measure the copy numbers of the MMTS transposon in genomes of the mud loach, it was shown that the MMTS transposon is present at about $3.36{\times}10^4$ copies per $2{\times}10^9$ bp, and accounts for approximately 0.027% of the mud loach genome. Here, we also describe novel MMTS-like transposons from the genomes of carp-like fishes, flatfish species, and cichlid fishes, which bear conserved inverted repeats flanking an apparently intact transposase gene. Additionally, BLAST searches and phylogenetic analysis indicated that MMTS-like transposons evolved uniquely in fishes, and comprise a new subfamily of Tc1-like transposons, with only modest similarity to Drosophila melanogaster (foldback element FB4, HB2, HB1), Xenopus laevis, Xenopus tropicalis, and Anopheles gambiae (Frisky).
Keywords
direct repeat (DR); DNA transposon; inverted repeat (IR); MMTS-like transposons; Tc1-like transposon;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Feschotte, C. (2004). Merlin a new superfamily of DNA transposons identified in diverse animal genomes and related to bacterial IS1016 insertion sequences. Mol. Biol. Evol. 21, 1769-1780   DOI   ScienceOn
2 Goodier, J.L., and Davidson, W.S. (1994). Tc1 transposon-like sequences are widely distributed in salmonids. J. Mol. Biol. 241, 26-34   DOI   ScienceOn
3 Harris, L.J., Baillie, D.L., and Rose, A.M. (1988). Sequence identity between an inverted repeat family of transposable elements in Drosophila and Caenorhabditis. Nucleic Acids Res. 16, 5991-5998   DOI
4 Henikoff, S. (1992). Detection of Caenorhabditis transposon homologs in diverse organisms. New Biol. 4, 382-388
5 Kapitonov, V.V., and Jurka, J. (1999). Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica 107, 27-37   DOI
6 Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Paabo, S., Villablanca, F.X., and Wilson, A.C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86, 6196-6200
7 Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
8 Hubbard, T., et al. (2005). Ensembl 2005. 33, D447-453   DOI   ScienceOn
9 Kumar, S., Tamura, K., and Nei, M. (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150-163   DOI   ScienceOn
10 Nam, Y.K., Noh, C.H., and Kim, D.S. (1999). Transmission and expression of an integrated reporter construct up to three generations in transgenic mud loach, Misgurnus mizolepis. Aquaculture 172, 229-245   DOI   ScienceOn
11 Shao, H., and Tu, Z. (2001). Expanding the diversity of the IS630-Tc1-Mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics 159, 1103-1115
12 Feschotte, C., and Pritham, E.J. (2007). DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331- 368   DOI   ScienceOn
13 Lohe, A.R., Moriyama, E.N., Lidholm, D.A., and Hartl, D.L. (1995). Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol. Biol. Evol. 12, 62-72   DOI   ScienceOn
14 Plasterk, R.H., Izsvak, Z., and Ivics, Z. (1999). Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 15, 326-332   DOI   ScienceOn
15 Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98
16 Hicks, G.R., and Raikhel, N.V. (1995). Protein import into the nucleus: an integrated view. Annu. Rev. Cell Dev. Biol. 11, 155- 188   DOI   ScienceOn
17 Izsvak, Z., Ivics, Z., and Hackett, P.B. (1995). Characterization of a Tc1-like transposable element in zebrafish (Danio rerio). Mol. Gen. Genet. 247, 312-322   DOI
18 van Luenen, H.G., Colloms, S.D., and Plasterk, R.H. (1994). The mechanism of transposition Tc3 of C. elegans. Cell 79, 293-301   DOI   ScienceOn
19 Ivics, Z., Izsvak, Z., Minter, A., and Hackett, P.B. (1996). Identification of functional domains and evolution of Tc1-like transposable elements. Proc. Natl. Acad. Sci. USA 93, 5008-5013
20 Horton, P., and Nakai, K. (1997). Better prediction of protein cellular localization sites with the k nearest neighbors classifier. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 147-152
21 Tafalla, C., Estepa, A., and Coll, J.M. (2006). Fish transposons and their potential use in aquaculture. J. Biotechnol. 123, 397-412   DOI   ScienceOn
22 Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680   DOI
23 Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882   DOI
24 Cui, Z., Geurts, A.M., Liu, G., Kaufman, C.D., and Hackett, P.B. (2002). Structure-function analysis of the inverted terminal repeats of the Sleeping Beauty transposon. J. Mol. Biol. 318, 1221-1235   DOI   ScienceOn
25 Doak, T.G., Doerder, F.P., Jahn, C.L., and Herrick, G. (1994). A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common "D35E" motif. Proc. Natl. Acad. Sci. USA 91, 942-946
26 Robertson, H.M. (1995). The Tc1-mariner superfamily of transposons in animals. J. Insect Physiol. 41, 99-105   DOI   ScienceOn
27 Lam, W.L., Seo, P., Robison, K., Virk, S., and Gilbert, W. (1996). Discovery of amphibian Tc1-like transposon families. J. Mol. Biol. 257, 359-366   DOI   ScienceOn
28 Nam, Y.K., Cho, Y.S., Cho, H.J., and Kim, D.S. (2002). Accelerated growth performance and stable germ-line transmission in androgenetically derived homozygous transgenic mud loach, Misgurnus mizolepis. Aquaculture 209, 257-270   DOI   ScienceOn
29 Lim, H.S., Kim, M.S., Park, J.Y., Choi, K.E., Hwang, J.Y., Kim, D.S., and Lee, H.H. (2002). Molecular cloning and characterization of ARS elements from the mud loach (Misgurnus mizolepis). Mol. Cells 13, 185-193
30 Clements, K.D., Gray, R.D., and Howard Choat, J. (2003). Rapid evolutionary divergences in reef fishes of the family Acanthuridae (Perciformes: Teleostei). Mol. Phylogenet. Evol. 26, 190- 201   DOI   ScienceOn
31 Radice, A.D., Bugaj, B., Fitch, D.H., and Emmons, S.W. (1994). Widespread occurrence of the Tc1 transposon family: Tc1-like transposons from teleost fish. Mol. Gen. Genet. 244, 606-612
32 Ivics, Z., Hackett, P.B., Plasterk, R.H., and Izsvak, Z. (1997). Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. 91, 501-510   DOI   ScienceOn
33 Leaver, M.J. (2001). A family of Tc1-like transposons from the genomes of fishes and frogs: evidence for horizontal transmission. Gene 271, 203-214   DOI   ScienceOn
34 Vos, J.C., and Plasterk, R.H. (1994). Tc1 transposase of Caenorhabditis elegans is an endonuclease with a bipartite DNA binding domain. EMBO J. 13, 6125-6132
35 Heierhorst, J., Lederis, K., and Richter, D. (1992). Presence of a member of the Tc1-like transposon family from nematodes and Drosophila within the vasotocin gene of a primitive vertebrate, the Pacific hagfish Eptatretus stouti. Proc. Natl. Acad. Sci. USA 89, 6798-6802
36 Jacobson, J.W., Medhora, M.M., and Hartl, D.L. (1986). Molecular structure of a somatically unstable transposable element in Drosophila. Proc. Natl. Acad. Sci. USA 83, 8684-8688.