1 |
Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg 1982;69:412-22.
DOI
|
2 |
Mulliken JB, Burrows PE, Fishman DJ. Mulliken and Young's vascular anomalies: hemangiomas and malformations. 2nd ed. New York: Oxford University Press; 2013.
|
3 |
Greene AK, Goss JA. Vascular anomalies: from a clinicohistologic to a genetic framework. Plast Reconstr Surg 2018;141: 709e-717e.
DOI
|
4 |
Lee JW, Chung HY. Vascular anomalies of the head and neck: current overview. Arch Craniofac Surg 2018;19:243-7.
DOI
|
5 |
Queisser A, Boon LM, Vikkula M. Etiology and genetics of congenital vascular lesions. Otolaryngol Clin North Am 2018;51:41-53.
DOI
|
6 |
Collins FS, Morgan M, Patrinos A. The Human Genome Project: lessons from large-scale biology. Science 2003;300: 286-90.
DOI
|
7 |
Sohn J. Next generation sequencing and anti-cancer therapy. J Korean Med Assoc 2019;62:119-29.
DOI
|
8 |
Koboldt DC, Steinberg KM, Larson DE, et al. The next-generation sequencing revolution and its impact on genomics. Cell 2013;155:27-38.
DOI
|
9 |
Wetzel-Strong SE, Detter MR, Marchuk DA. The pathobiology of vascular malformations: insights from human and model organism genetics. J Pathol 2017;241:281-93.
DOI
|
10 |
Adams DM. Practical genetic and biologic therapeutic considerations in vascular anomalies. Tech Vasc Interv Radiol 2019;22:100629.
DOI
|
11 |
International Society for the Study of Vascular Anomalies (ISSVA). ISSVA classification of vascular anomalies [Internet]. Milwaukee, WI: ISSVA; c2018 [cited 2020 May 11]. Available from: issva.org/classification.
|
12 |
North PE, Waner M, Brodsky MC. Are infantile hemangiomas of placental origin? Ophthalmology 2002;109:633-4.
DOI
|
13 |
Khan ZA, Boscolo E, Picard A, et al. Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. Version 2. J Clin Invest 2008;118:2592-9.
DOI
|
14 |
Jinnin M, Medici D, Park L, et al. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med 2008;14:1236-46.
DOI
|
15 |
Groesser L, Peterhof E, Evert M, et al. BRAF and RAS mutations in sporadic and secondary pyogenic granuloma. J Invest Dermatol 2016;136:481-6.
DOI
|
16 |
Uebelhoer M, Boon LM, Vikkula M. Vascular anomalies: from genetics toward models for therapeutic trials. Cold Spring Harb Perspect Med 2012;2:a009688.
DOI
|
17 |
Nasseri E, Piram M, McCuaig CC, et al. Partially involuting congenital hemangiomas: a report of 8 cases and review of the literature. J Am Acad Dermatol 2014;70:75-9.
DOI
|
18 |
Ayturk UM, Couto JA, Hann S, et al. Somatic activating mutations in GNAQ and GNA11 are associated with congenital hemangioma. Am J Hum Genet 2016;98:789-95.
DOI
|
19 |
Lim YH, Bacchiocchi A, Qiu J, et al. GNA14 somatic mutation causes congenital and sporadic vascular tumors by MAPK activation. Am J Hum Genet 2016;99:443-50.
DOI
|
20 |
Ji Y, Chen S, Yang K, et al. Kaposiform hemangioendothelioma: current knowledge and future perspectives. Orphanet J Rare Dis 2020;15:39.
DOI
|
21 |
Lee JW, Chung HY. Capillary malformations (Portwine Stains) of the head and neck: natural history, investigations, laser, and surgical management. Otolaryngol Clin North Am 2018;51:197-211.
DOI
|
22 |
Shirley MD, Tang H, Gallione CJ, et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 2013;368:1971-9.
DOI
|
23 |
Couto JA, Ayturk UM, Konczyk DJ, et al. A somatic GNA11 mutation is associated with extremity capillary malformation and overgrowth. Angiogenesis 2017;20:303-6.
DOI
|
24 |
Couto JA, Huang L, Vivero MP, et al. Endothelial cells from capillary malformations are enriched for somatic GNAQ mutations. Plast Reconstr Surg 2016;137:77e-82e.
DOI
|
25 |
Boscolo E, Coma S, Luks VL, et al. AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation. Angiogenesis 2015;18:151-62.
DOI
|
26 |
Eerola I, Boon LM, Mulliken JB, et al. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet 2003;73:1240-9.
DOI
|
27 |
Amyere M, Revencu N, Helaers R, et al. Germline loss-of-function mutations in EPHB4 cause a second form of Capillary Malformation-Arteriovenous Malformation (CM-AVM2) deregulating RAS-MAPK signaling. Circulation 2017;136:1037-48.
DOI
|
28 |
Cho BC, Kim JB, Lee JW, et al. Cervicofacial lymphatic malformations: a retrospective review of 40 cases. Arch Plast Surg 2016;43:10-8.
DOI
|
29 |
Osborn AJ, Dickie P, Neilson DE, et al. Activating PIK3CA alleles and lymphangiogenic phenotype of lymphatic endothelial cells isolated from lymphatic malformations. Hum Mol Genet 2015;24:926-38.
DOI
|
30 |
Park H, Kim JS, Park H, et al. Venous malformations of the head and neck: a retrospective review of 82 cases. Arch Plast Surg 2019;46:23-33.
DOI
|
31 |
Uebelhoer M, Natynki M, Kangas J, et al. Venous malformation-causative TIE2 mutations mediate an AKT-dependent decrease in PDGFB. Hum Mol Genet 2013;22:3438-48.
DOI
|
32 |
Couto JA, Vivero MP, Kozakewich HP, et al. A somatic MAP3K3 mutation is associated with verrucous venous malformation. Am J Hum Genet 2015;96:480-6.
DOI
|
33 |
Brouillard P, Boon LM, Mulliken JB, et al. Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations ("glomangiomas"). Am J Hum Genet 2002; 70:866-74.
DOI
|
34 |
Couto JA, Huang AY, Konczyk DJ, et al. Somatic MAP2K1 mutations are associated with extracranial arteriovenous malformation. Am J Hum Genet 2017;100:546-54.
DOI
|
35 |
Soblet J, Kangas J, Natynki M, et al. Blue Rubber Bleb Nevus (BRBN) syndrome is caused by somatic TEK (TIE2) mutations. J Invest Dermatol 2017;137:207-16.
DOI
|
36 |
Cavalcanti DD, Kalani MY, Martirosyan NL, et al. Cerebral cavernous malformations: from genes to proteins to disease. J Neurosurg 2012;116:122-32.
DOI
|
37 |
Kim JB, Lee JW, Choi KY, et al. Clinical characteristics of arteriovenous malformations of the head and neck. Dermatol Surg 2017;43:526-33.
DOI
|
38 |
Bayrak-Toydemir P, McDonald J, Akarsu N, et al. A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7. Am J Med Genet A 2006;140:2155-62.
DOI
|
39 |
Cole SG, Begbie ME, Wallace GM, et al. A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5. J Med Genet 2005;42:577-82.
DOI
|
40 |
Sung HM, Chung HY, Lee SJ, et al. Clinical experience of the Klippel-Trenaunay syndrome. Arch Plast Surg 2015;42:552-8.
DOI
|
41 |
Jacob AG, Driscoll DJ, Shaughnessy WJ, et al. Klippel-Trenaunay syndrome: spectrum and management. Mayo Clin Proc 1998;73:28-36.
DOI
|
42 |
Luks VL, Kamitaki N, Vivero MP, et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J Pediatr 2015;166:1048-54.
DOI
|
43 |
Mirzaa GM, Riviere JB, Dobyns WB. Megalencephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP. Am J Med Genet C Semin Med Genet 2013;163C:122-30.
DOI
|
44 |
Amary MF, Damato S, Halai D, et al. Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet 2011;43:1262-5.
DOI
|
45 |
Kurek KC, Luks VL, Ayturk UM, et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet 2012;90:1108-15.
DOI
|
46 |
Lindhurst MJ, Sapp JC, Teer JK, et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med 2011;365:611-9.
DOI
|