Browse > Article
http://dx.doi.org/10.5487/TR.2011.27.2.103

Lipotoxicity of Palmitic Acid on Neural Progenitor Cells and Hippocampal Neurogenesis  

Park, Hee-Ra (Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Longevity Life Science and Technology Institutes)
Kim, Ji-Young (Department of Food Science and Nutrition, College of Home Ecology, Pusan National University)
Park, Kun-Young (Department of Food Science and Nutrition, College of Home Ecology, Pusan National University)
Lee, Jae-Won (Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Longevity Life Science and Technology Institutes)
Publication Information
Toxicological Research / v.27, no.2, 2011 , pp. 103-110 More about this Journal
Abstract
Lipotoxicity involves pathological alterations to cells and tissues in response to elevated fat levels in blood. Furthermore, this process can disturb both cellular homeostasis and viability. In the current study, the authors show that neural progenitor cells (NPCs) are vulnerable to high levels of palmitic acid (PA) a saturated fatty acid. PA was found to cause cell death associated with elevated reactive oxygen species (ROS) levels, and to reduce NPCs proliferation. To evaluate the lipotoxicity of PA in adult NPCs in the hippocampus, male C57BL/6 mice were divided into two groups and maintained on either a normal diet (ND) or PA-rich high fat diet (HFD) for 2 weeks. Interestingly, short-term PA-rich HFD feeding reduced the survival of newly generated cells in the hippocampal dentate gyrus and hippocampal brain-derived neurotrophic factor levels. These findings suggest PA has a potent lipotoxicity in NPCs and that a PA-rich HFD disrupts hippocampal neurogenesis.
Keywords
High fat diet; Hippocampal neurogenesis; Neural progenitor cells; Brain-derived neurotrophic factor; Palmitic acid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Almaguel, F.G., Liu, J.W., Pacheco, F.J., Casiano, C.A. and De Leon, M. (2009). Activation and reversal of lipotoxicity in PC12 and rat cortical cells following exposure to palmitic acid. J. Neurosci. Res., 87, 1207-1218.   DOI   ScienceOn
2 Amtul, Z., Uhrig, M., Rozmahel, R.F. and Beyreuther, K. (2010). Structural basis for the differential effects of omega-3 and omega-6 fatty acids on Abeta production and amyloid plaques. J. Biol. Chem., 286, 6100-6107.
3 Anderson, M.F., Aberg, M.A., Nilsson, M. and Eriksson, P.S. (2002). Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res. Dev. Brain Res., 134, 115-122.   DOI   ScienceOn
4 Araki, H., Nishihara, T., Matsuda, M., Fukuhara, A., Kihara, S., Funahashi, T., Kataoka, T.R., Kamada, Y., Kiyohara, T., Tamura, S., Hayashi, N. and Shimomura, I. (2008). Adiponectin plays a protective role in caerulein-induced acute pancreatitis in mice fed a high-fat diet. Gut., 57, 1431-1440.   DOI   ScienceOn
5 Yu, H., Bi, Y., Ma, W., He, L., Yuan, L., Feng, J. and Xiao, R. (2010). Long-term effects of high lipid and high energy diet on serum lipid, brain fatty acid composition, and memory and learning ability in mice. Int. J. Dev. Neurosci., 28, 271-276.   DOI   ScienceOn
6 Yun, J.W., Lee, B.S., Kim, C.W. and Kim, B.H. (2007). Comparison with 3 high-fat diet for studying obesity in C57BL/6 mouse. Lab. Anim. Res., 23, 245-250.
7 Zhang, W., Hu, X., Yang, W., Gao, Y. and Chen, J. (2010). Omega-3 polyunsaturated fatty acid supplementation confers long-term neuroprotection against neonatal hypoxic-ischemic brain injury through anti-inflammatory actions. Stroke., 41, 2341-2347.   DOI   ScienceOn
8 van Praag, H., Kempermann, G. and Gage, F.H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci., 2, 266-270.   DOI   ScienceOn
9 Taepavarapruk, P. and Song, C. (2010). Reductions of acetylcholine release and nerve growth factor expression are correlated with memory impairment induced by interleukin-1beta administrations: effects of omega-3 fatty acid EPA treatment. J. Neurochem., 112, 1054-1064.   DOI   ScienceOn
10 Ulloth, J.E., Casiano, C.A. and De Leon, M. (2003). Palmitic and stearic fatty acids induce caspase-dependent and -independent cell death in nerve growth factor differentiated PC12 cells. J. Neurochem., 84, 655-668.   DOI   ScienceOn
11 van Praag, H., Schinder, A.F., Christie, B.R., Toni, N., Palmer, T.D. and Gage, F.H. (2002). Functional neurogenesis in the adult hippocampus. Nature., 415, 1030-1034.   DOI   ScienceOn
12 Walter, J., Keiner, S., Witte, O.W. and Redecker, C. (2009). Age-related effects on hippocampal precursor cell subpopulations and neurogenesis. Neurobiol. Aging.
13 Warner-Schmidt, J.L. and Duman, R.S. (2006). Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus., 16, 239-249.   DOI   ScienceOn
14 Mayer, C.M. and Belsham, D.D. (2010). Palmitate attenuates insulin signaling and induces endoplasmic reticulum stress and apoptosis in hypothalamic neurons: rescue of resistance and apoptosis through adenosine 5' monophosphate-activated protein kinase activation. Endocrinology, 151, 576-585.   DOI   ScienceOn
15 White, B.C., Sullivan, J.M., DeGracia, D.J., O'Neil, B.J., Neumar, R.W., Grossman, L.I., Rafols, J.A. and Krause, G.S. (2000). Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J. Neurol. Sci., 179, 1-33.   DOI   ScienceOn
16 Wrede, C.E., Dickson, L.M., Lingohr, M.K., Briaud, I. and Rhodes, C.J. (2002). Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic beta-cells (INS-1). J. Biol. Chem., 277, 49676-49684.   DOI   ScienceOn
17 Yamato, M., Shiba, T., Yoshida, M., Ide, T., Seri, N., Kudou, W., Kinugawa, S. and Tsutsui, H. (2007). Fatty acids increase the circulating levels of oxidative stress factors in mice with diet-induced obesity via redox changes of albumin. Febs J., 274, 3855-3863.   DOI   ScienceOn
18 Olson, A.K., Eadie, B.D., Ernst, C. and Christie, B.R. (2006). Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus., 16, 250-260.   DOI   ScienceOn
19 Park, H.R., Park, M., Choi, J., Park, K.Y., Chung, H.Y. and Lee, J. (2010). A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci. Lett., 482, 235-239.   DOI   ScienceOn
20 Patil, S., Melrose, J. and Chan, C. (2007). Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons. Eur. J. Neurosci., 26, 2131-2141.   DOI   ScienceOn
21 Patil, S., Sheng, L., Masserang, A. and Chan, C. (2006). Palmitic acid-treated astrocytes induce BACE1 upregulation and accumulation of C-terminal fragment of APP in primary cortical neurons. Neurosci. Lett., 406, 55-59.   DOI   ScienceOn
22 Snyder, E.Y., Deitcher, D.L., Walsh, C., Arnold-Aldea, S., Hartwieg, E.A. and Cepko, C.L. (1992). Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell., 68, 33-51.   DOI   ScienceOn
23 Pelleymounter, M.A., Cullen, M.J. and Wellman, C.L. (1995). Characteristics of BDNF-induced weight loss. Exp. Neurol., 131, 229-238.   DOI   ScienceOn
24 Rios, M., Fan, G., Fekete, C., Kelly, J., Bates, B., Kuehn, R., Lechan, R.M. and Jaenisch, R. (2001). Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol. Endocrinol., 15, 1748-1757.   DOI   ScienceOn
25 Ruiperez, V., Darios, F. and Davletov, B. (2010). Alpha-synuclein, lipids and Parkinson's disease. Prog. Lipid Res., 49, 420-428.   DOI   ScienceOn
26 Spector, A.A. (1975). Fatty acid binding to plasma albumin. J. Lipid Res., 16, 165-179.
27 Ilieva, E.V., Ayala, V., Jove, M., Dalfo, E., Cacabelos, D., Povedano, M., Bellmunt, M.J., Ferrer, I., Pamplona, R. and Portero-Otin, M. (2007). Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain., 130, 3111-3123.   DOI   ScienceOn
28 Kempermann, G., Kuhn, H.G. and Gage, F.H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature., 386, 493-495.   DOI   ScienceOn
29 Kernie, S.G., Liebl, D.J. and Parada, L.F. (2000). BDNF regulates eating behavior and locomotor activity in mice. Embo J., 19, 1290-1300.   DOI   ScienceOn
30 Kuhn, H.G., Dickinson-Anson, H. and Gage, F.H. (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci., 16, 2027-2033.
31 Lee, J., Duan, W., Long, J.M., Ingram, D.K. and Mattson, M.P. (2000). Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J. Mol. Neurosci., 15, 99-108.
32 Mattson, M.P. (1998). Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci., 21, 53-57.   DOI   ScienceOn
33 Lee, J., Duan, W. and Mattson, M.P. (2002a). Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J. Neurochem., 82, 1367-1375.   DOI   ScienceOn
34 Lee, J., Seroogy, K.B. and Mattson, M.P. (2002b). Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J. Neurochem., 80, 539-547.   DOI   ScienceOn
35 Martinez de Morentin, P.B., Varela, L., Ferno, J., Nogueiras, R., Dieguez, C. and Lopez, M. (2010). Hypothalamic lipotoxicity and the metabolic syndrome. Biochim. Biophys. Acta., 1801, 350-361.   DOI   ScienceOn
36 Bueno, A.A., Oyama, L.M., de Macedo Motoyama, C.S., da Silva Biz, C.R., Silveira, V.L., Ribeiro, E.B. and Oller do Nascimento, C.M. (2010). Long chain saturated fatty acids increase haptoglobin gene expression in C57BL/6J mice adipose tissue and 3T3-L1 cells. Eur. J. Nutr., 49, 235-241.   DOI   ScienceOn
37 Cameron, H.A. and McKay, R.D. (1999). Restoring production of hippocampal neurons in old age. Nat. Neurosci., 2, 894-897.   DOI   ScienceOn
38 Cao, L., Jiao, X., Zuzga, D.S., Liu, Y., Fong, D.M., Young, D. and During, M.J. (2004). VEGF links hippocampal activity with neurogenesis, learning and memory. Nat. Genet., 36, 827-835.   DOI   ScienceOn
39 Chess, D.J. and Stanley, W.C. (2008). Role of diet and fuel over-abundance in the development and progression of heart failure. Cardiovasc. Res., 79, 269-278.   DOI   ScienceOn
40 Cnop, M. (2008). Fatty acids and glucolipotoxicity in the pathogenesis of Type 2 diabetes. Biochem. Soc. Trans., 36, 348-352.   DOI   ScienceOn
41 Hansen, D., Dendale, P., Beelen, M., Jonkers, R.A., Mullens, A., Corluy, L., Meeusen, R. and van Loon, L.J. (2010). Plasma adipokine and inflammatory marker concentrations are altered in obese, as opposed to non-obese, type 2 diabetes patients. Eur. J. Appl. Physiol., 109, 397-404.   DOI   ScienceOn
42 Comhair, T.M., Garcia Caraballo, S.C., Dejong, C.H., Lamers, W.H. and Koehler, S.E. (2011). Dietary cholesterol, female gender and n-3 fatty acid deficiency are more important factors in the development of non-alcoholic fatty liver disease than the saturation index of the fat. Nutr. Metab. (Lond), 8, 4.   DOI   ScienceOn
43 Einstein, O. and Ben-Hur, T. (2008). The changing face of neural stem cell therapy in neurologic diseases. Arch. Neurol., 65, 452-456.   DOI   ScienceOn
44 Fraser, T., Tayler, H. and Love, S. (2010). Fatty acid composition of frontal, temporal and parietal neocortex in the normal human brain and in Alzheimer's disease. Neurochem. Res., 35, 503-513.   DOI   ScienceOn
45 Hariri, N., Gougeon, R. and Thibault, L. (2010). A highly saturated fat-rich diet is more obesogenic than diets with lower saturated fat content. Nutr. Res., 30, 632-643.   DOI   ScienceOn