Browse > Article
http://dx.doi.org/10.5187/jast.2022.e5

Potential application of urease and nitrification inhibitors to mitigate emissions from the livestock sector: a review  

Eska, Nugrahaeningtyas (Department of Animal Industry Convergence, Kangwon National University)
Eska, Nugrahaeningtyas (Department of Animal Industry Convergence, Kangwon National University)
Jun-Ik, Song (Division of Animal Husbandry, Yonam College)
Jung-Kon, Kim (Department of Animal Environment, National Institute of Animal Science)
Kyu-Hyun, Park (Department of Animal Industry Convergence, Kangwon National University)
Publication Information
Journal of Animal Science and Technology / v.64, no.4, 2022 , pp. 603-620 More about this Journal
Abstract
Human activities have caused an increase in greenhouse gas emissions, resulting in climate change that affects many factors of human life including its effect on water and food quality in certain areas with implications for human health. CH4 and N2O are known as potent non-CO2 GHGs. The livestock industry contributes to direct emissions of CH4 (38.24%) and N2O (6.70%) through enteric fermentation and manure treatment, as well as indirect N2O emissions via NH3 volatilization. NH3 is also a secondary precursor of particulate matter. Several approaches have been proposed to address this issue, including dietary management, manure treatment, and the possibility of inhibitor usage. Inhibitors, including urease and nitrification inhibitors, are widely used in agricultural fields. The use of urease and nitrification inhibitors is known to be effective in reducing nitrogen loss from agricultural soil in the form of NH3 and N2O and can further reduce CH4 as a side effect. However, the effectiveness of inhibitors in livestock manure systems has not yet been explored. This review discusses the potential of inhibitor usage, specifically of N-(n-butyl) thiophosphoric triamide, dicyandiamide, and 3,4-dimethylpyrazole phosphate, to reduce emissions from livestock manure. This review focuses on the application of inhibitors to manure, as well as the association of these inhibitors with health, toxicity, and economic benefits.
Keywords
Livestock emissions; Greenhouse gas (GHG) emissions; Urease inhibitor; Nitrification inhibitor; Particulate matter;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Hristov AN. Technical note: contribution of ammonia emitted from livestock to atmospheric fine particulate matter (PM2.5) in the United States. J Dairy Sci. 2011;94:3130-6. https://doi.org/10.3168/jds.2010-3681   DOI
2 Pozzer A, Tsimpidi AP, Karydis VA, de Meij A, Lelieveld J. Impact of agricultural emission reductions on fine-particulate matter and public health. Atmos Chem Phys. 2017;17:12813-26. https://doi.org/10.5194/acp-17-12813-2017   DOI
3 Dai C, Huang S, Zhou Y, Xu B, Peng H, Qin P, et al. Concentrations and emissions of particulate matter and ammonia from extensive livestock farm in South China. Environ Sci Pollut Res. 2019;26:1871-9. https://doi.org/10.1007/s11356-018-3766-4   DOI
4 Guthrie S, Giles S, Dunkerley F, Tabaqchali H, Harshfield A, Ioppolo B,et al. The impact of ammonia emissions from agriculture on biodiversity: an evidence synthesis. Santa Monica, CA: Rand; 2018.
5 Naseem S, King AJ. Ammonia production in poultry houses can affect health of humans, birds, and the environment-techniques for its reduction during poultry production. Environ Sci Pollut Res. 2018;25:15269-93. https://doi.org/10.1007/s11356-018-2018-y   DOI
6 Smit LAM, Heederik D. Impacts of intensive livestock production on human health in densely populated regions. GeoHealth. 2017;1:272-7. https://doi.org/10.1002/2017GH000103   DOI
7 Tsimpidi AP, Karydis VA, Pandis SN. Response of inorganic fine particulate matter to emission changes of sulfur dioxide and ammonia: the eastern United States as a case study. J Air Waste Manag Assoc. 2007;57:1489-98. https://doi.org/10.3155/1047-3289.57.12.1489   DOI
8 de Meij A, Thunis P, Bessagnet B, Cuvelier C. The sensitivity of the CHIMERE model to emissions reduction scenarios on air quality in Northern Italy. Atmos Environ. 2009;43:1897-907. https://doi.org/10.1016/j.atmosenv.2008.12.036   DOI
9 Malla G, Bhatia A, Pathak H, Prasad S, Jain N, Singh J. Mitigating nitrous oxide and methane emissions from soil in rice-wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors. Chemosphere. 2005;58:141-7. https://doi.org/10.1016/j.chemosphere.2004.09.003   DOI
10 Li Y, Xu J, Liu X, Qi Z, Wang H, Li Y, et al. Nitrification inhibitor DMPP offsets the increase in N2O emission induced by soil salinity. Biol Fertil Soils. 2020;56:1211-7. https://doi.org/10.1007/s00374-020-01490-9   DOI
11 ECHA [European Chemical Agency]. 1H-Pyrazole, 3,4-dimethyl-, phosphate (1:1) [Internet]. European Chemical Agency. 2021 [cited 2021 Sep 27]. https://echa.europa.eu/el/registrationdossier/-/registered-dossier/23160
12 ECHA [European Chemical Agency]. N-butylphosphorothioic triamide [Internet]. European Chemical Agency. 2021 [cited 2021 Sep 27]. https://echa.europa.eu/el/registration-dossier/-/registered-dossier/16245
13 IPCC [Intergovernmental Panel on Climate Change]. Global warming of 1.5°C: IPCC special report on impacts of global warming of 1.5°C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty. Cambridge: Cambridge University Press; 2022. p. 616.
14 UNFCCC [United Nations Framework Convention on Climate Change]. Greenhouse gas inventory data - GHG profiles - Annex I [Internet]. United Nation Climate Change. 2021 [cited 2021 Sep 27]. https://di.unfccc.int/ghg_profile_annex1
15 UNFCCC [United Nations Framework Convention on Climate Change]. Global assessment: urgent steps must be taken to reduce methane emissions this decade [Internet]. United Nation Climate Change. 2019 [cited 2021 Sep 27]. https://unfccc.int/news/global-assessment-urgentsteps-must-be-taken-to-reduce-methane-emissions-this-decade
16 Llonch P, Haskell MJ, Dewhurst RJ, Turner SP. Current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective. Animal. 2017;11:274-84. https://doi.org/10.1017/S1751731116001440   DOI
17 Montes F, Meinen R, Dell C, Rotz A, Hristov AN, Oh J, et al. Special topics-mitigation of methane and nitrous oxide emissions from animal operations: II. a review of manure management mitigation options. J Anim Sci. 2013;91:5070-94. https://doi.org/10.2527/jas.2013-6584   DOI
18 Haque MN. Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. J Anim Sci Technol. 2018;60:15. https://doi.org/10.1186/s40781-018-0175-7   DOI
19 Caro D, Kebreab E, Mitloehner FM. Mitigation of enteric methane emissions from global livestock systems through nutrition strategies. Clim Change. 2016;137:467-80. https://doi.org/10.1007/s10584-016-1686-1   DOI
20 Petersen SO. Greenhouse gas emissions from liquid dairy manure: prediction and mitigation. J Dairy Sci. 2018;101:6642-54. https://doi.org/10.3168/jds.2017-13301   DOI
21 Kim H, Lee HG, Baek,YC, Lee S, Seo J. The effects of dietary supplementation with 3-nitrooxypropanol on enteric methane emissions, rumen fermentation, and production performance in ruminants: A meta-analysis. J Anim Sci Technol 2020;62:31-42. https://doi.org/10.5187/JAST.2020.62.1.31   DOI
22 Takahashi J, Iwasa M. Entomological approach to the impact of ionophore-feed additives on greenhouse gas emissions from pasture land in cattle. J Anim Sci Technol. 2021;63:16-24. https://doi.org/10.5187/JAST.2021.E11   DOI
23 Byrne MP, Tobin JT, Forrestal PJ, Danaher M, Nkwonta CG, Richards K, et al. Urease and nitrification inhibitors-as mitigation tools for greenhouse gas emissions in sustainable dairy systems: a review. Sustainability. 2020;12:6018. https://doi.org/10.3390/su12156018   DOI
24 Alemu AW, Ominski KH, Kebreab E. Estimation of enteric methane emissions trends (1990-2008) from Manitoba beef cattle using empirical and mechanistic models. Can J Anim Sci. 2011;91:305-21. https://doi.org/10.4141/cjas2010-009   DOI
25 UNFCCC [United Nations Framework Convention on Climate Change]. Paris Agreement [Internet]. United Nations. 2015 [cited 2021 Sep 27]. https://unfccc.int/sites/default/files/english_paris_agreement.pdf
26 Koolen CD, Rothenberg G. Air pollution in Europe. ChemSusChem. 2019;12:164-72. https://doi.org/10.1002/cssc.201802292   DOI
27 Gerber PJ, Hristov AN, Henderson B, Makkar H, Oh J, Lee C, et al. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal. 2013;7:220-34. https://doi.org/10.1017/S1751731113000876   DOI
28 Atlas RM. Principles of microbiology. St. Louis, MO: Mosby; 1995.
29 Maier R, Pepper IL, Gerba CP. Environmental microbiology. Oxford: Elsevier; 2009.
30 Monteny GJ, Groenestein CM, Hilhorst MA. Interactions and coupling between emissions of methane and nitrous oxide from animal husbandry. Nutr Cycl Agroecosyst. 2001;60:123-32. https://doi.org/10.1023/A:1012602911339   DOI
31 FAOSTAT. Emission totals [Internet]. Food and Agriculture Organization of the United Nations. 2021 [cited 2021 Sep 28]. http://www.fao.org/faostat/en/#data/GT
32 Broucek J. Production of methane emissions from ruminant husbandry: a review. J Environ Prot. 2014;5:1482-93. https://doi.org/10.4236/jep.2014.515141   DOI
33 Nkrumah JD, Okine EK, Mathison GW, Schmid K, Li C, Basarab JA, et al. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J Anim Sci. 2006;84:145-53. https://doi.org/10.2527/2006.841145x   DOI
34 Pan B, Lam SK, Mosier A, Luo Y, Chen D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agric Ecosyst Environ. 2016;232:283-9. https://doi.org/10.1016/j.agee.2016.08.019   DOI
35 IPCC [Intergovernmental Panel on Climate Change]. 2006 IPCC guidelines for national greenhouse gas inventories. Kanagawa: Institute for Global Environmental Strategies; 2006.
36 Ni K, Kage H, Pacholski A. Effects of novel nitrification and urease inhibitors (DCD/TZ and 2-NPT) on N2O emissions from surface applied urea: an incubation study. Atmos Environ. 2018;175:75-82. https://doi.org/10.1016/j.atmosenv.2017.12.002   DOI
37 Adhikari KP, Saggar S, Hanly JA, Guinto DF. Comparing the effectiveness and longevity of the urease inhibitor N-(2-nitrophenyl) phosphoric triamide (2-NPT) with N-(n-butyl) thiophosphoric triamide (nBTPT) in reducing ammonia emissions from cattle urine applied to dairy-grazed pasture soils. Soil Res. 2019;57:719-28. https://doi.org/10.1071/SR18337   DOI
38 Engel R, Jones C, Wallander R. Ammonia volatilization from urea and mitigation by NBPT following surface application to cold soils. Soil Sci Soc Am J. 2011;75:2348-57. https://doi.org/10.2136/sssaj2011.0229   DOI
39 Soares JR, Cantarella H, Menegale MLC. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biol Biochem. 2012;52:82-9. https://doi.org/10.1016/j.soilbio.2012.04.019   DOI
40 Parker DB, Pandrangi S, Greene LW, Almas LK, Cole NA, Rhoades MB, et al. Rate and frequency of urease inhibitor application for minimizing ammonia emissions from beef cattle feedyards. Trans Am Soc Agric Eng. 2005;48:787-93. https://doi.org/10.13031/2013.18321   DOI
41 Gronroos J, Mattila P, Regina K, Nousiainen J, Perala P, Saarinen K, et al. Development of the ammonia emission inventory in Finland. Revised model for agriculture. Helsinki: Finnish Environment Institute; 2009.
42 Bitton G. Wastewater microbiology. 4th ed. Hoboken, NJ: John Wiley & Sons; 2011.
43 Hristov AN, Oh J, Lee C, Meinen R, Montes F, Ott T, et al. Nutritional and management strategies to mitigate animal greenhouse gas emissions. In: Proceedings of the 2013 24th Annual Florida Ruminantnutrition Symposium; 2013; Gainesville, FL. p. 90-7.
44 IPCC [Intergovernmental Panel on Climate Change] National Greenhouse Gas Inventories Programme. Good practice guidance and uncertainty management in national greenhouse gas inventories. Kanagawa: IPCC by the Institute for Global Environmental Strategies; 2000.
45 Sigurdarson JJ, Svane S, Karring H. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev Environ Sci Biotechnol. 2018;17:241-58. https://doi.org/10.1007/s11157-018-9466-1   DOI
46 Bronson KF, Mosier AR. Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors. Biol Fertil Soils. 1994;17:263-8. https://doi.org/10.1007/BF00383979   DOI
47 Pereira J, Barneze AS, Misselbrook TH, Coutinho J, Moreira N, Trindade H. Effects of a urease inhibitor and aluminium chloride alone or combined with a nitrification inhibitor on gaseous N emissions following soil application of cattle urine. Biosyst Eng. 2013;115:396-407. https://doi.org/10.1016/j.biosystemseng.2013.05.002   DOI
48 Akiyama H, Yan X, Yagi K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Glob Change Biol. 2010;16:1837-46. https://doi.org/10.1111/j.1365-2486.2009.02031.x   DOI
49 EPA [United States Environmental Protection Agency]. Perticide fact sheet: nitrapyrin [Internet]. United States Environmental Protection Agency. 1985 [cited 2021 Feb 28]. https://nepis.epa.gov/Exe/ZyNET.exe/91024KR8.TXT?ZyActionD=ZyDocument&Client=EPA&Index-=1981+Thru+1985&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=
50 Crill PM, Martikainen PJ, Nykanen H, Silvola J. Temperature and N fertilization effects on methane oxidation in a drained peatland soil. Soil Biol Biochem. 1994;26:1331-9. https://doi.org/10.1016/0038-0717(94)90214-3   DOI
51 Weiske A, Benckiser G, Herbert T, Ottow J. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol Fertil Soils. 2001;34:109-17. https://doi.org/10.1007/s003740100386   DOI
52 Cai Y, Akiyama H. Effects of inhibitors and biochar on nitrous oxide emissions, nitrate leaching, and plant nitrogen uptake from urine patches of grazing animals on grasslands: a meta-analysis. Soil Sci Plant Nutr. 2017;63:405-14. https://doi.org/10.1080/00380768.2017.1367627   DOI
53 Vilarrasa-Nogue M, Teira-Esmatges MR, Pascual M, Villar JM, Rufat J. Effect of N dose, fertilisation duration and application of a nitrification inhibitor on GHG emissions from a peach orchard. Sci Total Environ. 2020;699:134042. https://doi.org/10.1016/j.scitotenv.2019.134042   DOI
54 Oliveira LV, Higarashi MM, Nicoloso RS, Coldebella A. Use of dicyandiamide to reduce nitrogen loss and nitrous oxide emission during mechanically turned co-composting of swine slurry with sawdust. Waste Biomass Valorization. 2020;11:2567-79. https://doi.org/10.1007/s12649-019-00616-x   DOI
55 Minet EP, Jahangir MMR, Krol DJ, Rochford N, Fenton O, Rooney D, et al. Amendment of cattle slurry with the nitrification inhibitor dicyandiamide during storage: a new effective and practical N2O mitigation measure for landspreading. Agric Ecosyst Environ. 2016;215:68-75. https://doi.org/10.1016/j.agee.2015.09.014   DOI
56 Luo J, Ledgard S, Wise B, Welten B, Lindsey S, Judge A, et al. Effect of dicyandiamide (DCD) delivery method, application rate, and season on pasture urine patch nitrous oxide emissions. Biol Fertil Soils. 2015;51:453-64. https://doi.org/10.1007/s00374-015-0993-4   DOI
57 Wu K, Gong P, Zhang L, Wu Z, Xie X, Yang H, et al. Yield-scaled N2O and CH4 emissions as affected by combined application of stabilized nitrogen fertilizer and pig manure in rice fields. Plant Soil Environ. 2019;65:497-502. https://doi.org/10.17221/286/2019-PSE   DOI
58 Liu C, Wang K, Zheng X. Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat-maize cropping system. Biogeosciences. 2013;10:2427-37. https://doi.org/10.5194/bg-10-2427-2013   DOI
59 Huerfano X, Fuertes-Mendizabal T, Dunabeitia MK, Gonzalez-Murua C, Estavillo JM, Menendez S. Splitting the application of 3,4-dimethylpyrazole phosphate (DMPP): influence on greenhouse gases emissions and wheat yield and quality under humid Mediterranean conditions. Eur J Agron. 2015;64:47-57. https://doi.org/10.1016/j.eja.2014.11.008   DOI
60 Qiao C, Mia S, Wang Y, Hou J, Xu B. Assessing the effects of nitrification inhibitor DMPP on acidification and inorganic N leaching loss from tea (Camellia sinensis L.) cultivated soils with increasing urea-N rates. Sustainability. 2021;13:994. https://doi.org/10.3390/su13020994   DOI
61 Zerulla W, Barth T, Dressel J, Erhardt K, von Locquenghien KH, Pasda G, et al. 3,4-Dimethylpyrazole phosphate (DMPP) - a new nitrification inhibitor for agriculture and horticulture. Biol Fertil Soils. 2001;34:79-84. https://doi.org/10.1007/s003740100380   DOI
62 Tindaon F, Benckiser G, Ottow JCG. Evaluation of ecological doses of the nitrification inhibitors 3,4-dimethylpyrazole phosphate (DMPP) and 4-chloromethylpyrazole (ClMP) in comparison to dicyandiamide (DCD) in their effects on dehydrogenase and dimethyl sulfoxide reductase activity in soils. Biol Fertil Soils. 2012;48:643-50. https://doi.org/10.1007/s00374-011-0655-0   DOI
63 MPI [Ministry of Primary Industries]. New Zealand government assures safety of country's dairy products [Internet]. Ministry of Primary Industries. 2013 [cited 2021 Sep 27]. https://www.mpi.govt.nz/news/media-releases/new-zealand-government-assures-safety-of-countrysdairy-products/
64 NICNAS [National Industrial Chemicals Notification and Assessment Scheme]. N-(n-butyl) thiophosphoric triamide (NBPT). Sydney: The Australian Government Department of Health and Ageing; 2011.
65 Welten BG, Ledgard SF, Balvert SF, Kear MJ, Dexter MM. Effects of oral administration of dicyandiamide to lactating dairy cows on residues in milk and the efficacy of delivery via a supplementary feed source. Agric Ecosyst Environ. 2016;217:111-8. https://doi.org/10.1016/j.agee.2015.10.013   DOI
66 Kim DG, Giltrap D, Saggar S, Palmada T, Berben P, Drysdale D. Fate of the nitrification inhibitor dicyandiamide (DCD) sprayed on a grazed pasture: effect of rate and time of application. Soil Res. 2012;50:337-47. https://doi.org/10.1071/SR12069   DOI
67 van de Ligt J, Borghoff SJ, Yoon M, Ferguson LJ, DeMaio W, McClanahan RH. Nondetectable or minimal detectable residue levels of N-(n-butyl) thiophosphoric triamide in bovine tissues and milk from a 28-d NBPT dosing study. Transl Anim Sci. 2019;3:1606-16. https://doi.org/10.1093/tas/txz153   DOI
68 ECHA [European Chemical Agency]. Cyanoganidine [Internet]. European Chemical Agency. 2021 [cited 2021 Sep 27]. https://echa.europa.eu/el/registration-dossier/-/registereddossier/15751/7/1
69 Grafton RQ, Daugbjerg C, Qureshi ME. Towards food security by 2050. Food Secur. 2015;7:179-83. https://doi.org/10.1007/s12571-015-0445-x   DOI
70 Rodriguez A, Sanders IR. The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J. 2015;9:1053-61. https://doi.org/10.1038/ismej.2014.207   DOI
71 Mahmud K, Panday D, Mergoum A, Missaoui A. Nitrogen losses and potential mitigation strategies for a sustainable agroecosystem. Sustainability. 2021;13:2400. https://doi.org/10.3390/su13042400   DOI
72 Guardia G, Sanz-Cobena A, Sanchez-Martin L, Fuertes-Mendizabal T, Gonzalez-Murua C, Alvarez JM, et al. Urea-based fertilization strategies to reduce yield-scaled N oxides and enhance bread-making quality in a rainfed Mediterranean wheat crop. Agric Ecosyst Environ. 2018;265:421-31. https://doi.org/10.1016/j.agee.2018.06.033   DOI
73 Hashim MM, Yusop MK, Othman R, Wahid SA. Field evaluation of newly-developed controlled release fertilizer on rice production and nitrogen uptake. Sains Malays. 2017;46:925-32. https://doi.org/10.17576/jsm-2017-4606-12   DOI
74 Mousavi Shalmani MA, Lakzian A, Khorassani R, Khavazi K, Zaman M. Interaction of different wheat genotypes and nitrification inhibitor 3,4-dimethylpyrazole phosphate using 15N isotope tracing techniques. Commun Soil Sci Plant Anal. 2017;48:1247-58. https://doi.org/10.1080/00103624.2016.1261888   DOI
75 Yang G, Ji H, Sheng J, Zhang Y, Feng Y, Guo Z, et al. Combining Azolla and urease inhibitor to reduce ammonia volatilization and increase nitrogen use efficiency and grain yield of rice. Sci Total Environ. 2020;743:140799. https://doi.org/10.1016/j.scitotenv.2020.140799   DOI
76 Kakabouki IP, Karydogianni S, Zisi C, Folina A. Effect of fertilization with N-inhibitors on root and crop development of flaxseed crop (Linum usitatissimum L.). Agrivita J Agric Sci. 2020;42:411-24. https://doi.org/10.17503/agrivita.v42i3.2650   DOI
77 Laboski C. Does it pay to use nitrification and urease inhibitors. In: Proceedings of the 2006 Wisconsin Fertilizer, Aglime & Pest Management Conference; 2006; Madison, WI. p. 44-50. http://www.soils.wisc.edu/extension/wcmc/2006/pap/Laboski1.pdf
78 Saffeullah P, Nabi N, Liaqat S, Anjum NA, Siddiqi TO, Umar S. Organic agriculture: principles, current status, and significance. In: Hakeem KR, Dar GH, Mehmood MA, Bhat RA, editors. Microbiota and biofertilizers. Cham: Springer; 2020. p. 17-37.
79 Hao C, Pan Y, Zhang Z, Zeng Y. Kinetic determination of urease activity in fresh pig feces and slurry and the effect on ammonia production at different conditions. Sustainability. 2019;11:6396. https://doi.org/10.3390/su11226396   DOI
80 Spek JW, Dijkstra J, Van Duinkerken G, Bannink A. A review of factors influencing milk urea concentration and its relationship with urinary urea excretion in lactating dairy cattle. J Agric Sci. 2013;151:407-23. https://doi.org/10.1017/S0021859612000561   DOI
81 Dijkstra J, Oenema O, van Groenigen JW, Spek JW, van Vuuren AM, Bannink A. Diet effects on urine composition of cattle and N2O emissions. Animal. 2013;7:292-302. https://doi.org/10.1017/S1751731113000578   DOI
82 Feng L, Li X, Zhen X, Dong H, Zheng J, Wang Y. Study of enzyme activity changing pattern in livestock manures composting. Appl Ecol Environ Res. 2019;17:6581-93. https://doi.org/10.15666/aeer/1703_65816593   DOI
83 Bristow AW, Whitehead DC, Cockburn JE. Nitrogenous constituents in the urine of cattle, sheep and goats. J Sci Food Agric. 1992;59:387-94. https://doi.org/10.1002/jsfa.2740590316   DOI
84 Varel VH. Use of urease inhibitors to control nitrogen loss from livestock waste. Bioresour Technol. 1997;62:11-7. https://doi.org/10.1016/S0960-8524(97)00130-2   DOI
85 Peacock AD, Mullen MD, Ringelberg DB, Tyler DD, Hedrick DB, Gale PM, et al. Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biol Biochem. 2001;33:1011-9. https://doi.org/10.1016/S0038-0717(01)00004-9   DOI
86 Hua W, Luo P, An N, Cai F, Zhang S, Chen K, et al. Manure application increased crop yields by promoting nitrogen use efficiency in the soils of 40-year soybean-maize rotation. Sci Rep. 2020;10:14882. https://doi.org/10.1038/s41598-020-71932-9   DOI
87 Ewulo BS, Sanni KO, Eleduma AF. Effects of urea and poultry manure on growth and yield attributes of tomatoes (Lycopersicon esculentum Mill) and soil chemical composition. Int J Innov Res Adv Stud. 2016;3:5-9.
88 Varel VH, Nienaber JA, Freetly HC. Conservation of nitrogen in cattle feedlot waste with urease inhibitors. J Anim Sci. 1999;77:1162-8. https://doi.org/10.2527/1999.7751162x   DOI
89 Kong X, Eriksen J, Petersen SO. Evaluation of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) for mitigating soil N2O emissions after grassland cultivation. Agric Ecosyst Environ. 2018;259:174-83. https://doi.org/10.1016/j.agee.2018.02.029   DOI
90 Adotey N, Kongchum M, Li J, Whitehurst GB, Sucre E, Harrell DL. Ammonia volatilization of zinc sulfate-coated and NBPT-treated urea fertilizers. Agron J. 2017;109:2918-26. https://doi.org/10.2134/agronj2017.03.0153   DOI
91 Sanz-Cobena A, Misselbrook T, Camp V, Vallejo A. Effect of water addition and the urease inhibitor NBPT on the abatement of ammonia emission from surface applied urea. Atmos Environ. 2011;45:1517-24. https://doi.org/10.1016/j.atmosenv.2010.12.051   DOI
92 Cahalan E, Ernfors M, Muller C, Devaney D, Laughlin RJ, Watson CJ, et al. The effect of the nitrification inhibitor dicyandiamide (DCD) on nitrous oxide and methane emissions after cattle slurry application to Irish grassland. Agric Ecosyst Environ. 2015;199:339-49. https://doi.org/10.1016/j.agee.2014.09.008   DOI
93 Watson CJ, Akhonzada NA, Hamilton JTG, Matthews DI. Rate and mode of application of the urease inhibitor N-(n-butyl) thiophosphoric triamide on ammonia volatilization from surface-applied urea. Soil Use Manage. 2008;24:246-53. https://doi.org/10.1111/j.1475-2743.2008.00157.x   DOI
94 Simon PL, Dieckow J, Zanatta JA, Ramalho B, Ribeiro RH, van der Weerden T, et al. Does Brachiaria humidicola and dicyandiamide reduce nitrous oxide and ammonia emissions from cattle urine patches in the subtropics? Sci Total Environ. 2020;720:137692. https://doi.org/10.1016/j.scitotenv.2020.137692   DOI
95 Simon PL, Dieckow J, de Klein CAM, Zanatta JA, van der Weerden TJ, Ramalho B, et al. Nitrous oxide emission factors from cattle urine and dung, and dicyandiamide (DCD) as a mitigation strategy in subtropical pastures. Agric Ecosyst Environ. 2018;267:74-82. https://doi.org/10.1016/j.agee.2018.08.013   DOI
96 Suleiman AKA, Gonzatto R, Aita C, Lupatini M, Jacques RJS, Kuramae EE, et al. Temporal variability of soil microbial communities after application of dicyandiamide-treated swine slurry and mineral fertilizers. Soil Biol Biochem. 2016;97:71-82. https://doi.org/10.1016/j.soilbio.2016.03.002   DOI
97 Jumadi O, Hala Y, Muis A, Ali A, Palennari M, Yagi K, et al. Influences of chemical fertilizers and a nitrification inhibitor on greenhouse gas fluxes in a corn (Zea mays L.) field in Indonesia. Microbes Environ. 2008;23:29-34. https://doi.org/10.1264/jsme2.23.29   DOI