Browse > Article
http://dx.doi.org/10.1186/s40781-015-0041-9

Effect of different soybean meal type on ileal digestibility of amino acid in weaning pigs  

Kim, Dong Hyuk (College of Agriculture and Life Science, Seoul National University)
Heo, Pil Seung (College of Agriculture and Life Science, Seoul National University)
Jang, Jae Cheol (College of Agriculture and Life Science, Seoul National University)
Jin, Song Shan (College of Agriculture and Life Science, Seoul National University)
Hong, Jin Su (College of Agriculture and Life Science, Seoul National University)
Kim, Yoo Yong (College of Agriculture and Life Science, Seoul National University)
Publication Information
Journal of Animal Science and Technology / v.57, no.3, 2015 , pp. 11.1-11.8 More about this Journal
Abstract
An experiment was conducted to evaluate apparent (AID) and standardized (SID) ileal digestibilities of crude protein (CP) and amino acids (AA) with 6 soybean products in weaning pigs. A total of 14 weaning barrows with an initial body weight of $6.54{\pm}0.34kg$ were fitted with T-cannula at the distal ileum and allotted to 7 diets containing various soybean products. The soybean products used in the experiment were conventional soybean meal (CSBM), SBM fermented by Aspergillus oryzae GB-107 (FSBMA), SBM fermented by Bacillus subtilis PP6 (FSBMB), UV sterilized SBM fermented by Bacillus subtilis PP6 (UVFSBMB), SBM containing Bacillus subtilis PP6 (PSBM), and soy protein concentrate (SPC). Six corn-based diets were used and each of soybean products was added. All diets contained 5.0 g/kg of chromic oxide as an indigestible indicator and an N-free diet was used to measure basal endogenous losses of CP and AAs. Ileal CP digestibility did not differ by different soybean products. However, SIDs of Ile, Phe and Val were improved in pigs fed the FSBMB, UVFSBMB and SPC diets and the pigs fed the FSBMA diet showed higher SIDs of Phe and Val compared with those fed the CSBM diet (P < 0.05). The FSBMB diet had higher SIDs in most AAs compared with the FSBMA diet (P < 0.05), and higher SIDs of Lys, Ala, Pro, Ser, and Tyr compared with PSBM diet (P < 0.05). However, there was no response of UV-sterilization on the FSBMB in the SIDs of AAs. These results suggest that SIDs of AAs could be improved by the supplementation of fermented soybean products in the diet for weaning pigs but fermentation with Bacillus subtilis is more efficient in improving ileal AA digestibility than that with Aspergillus oryzae. Furthermore, probiotics supplementation in the CSBM and UV-sterilization of the FSBMB had no effects on chemical composition and ileal AA digestibility.
Keywords
Fermented soybean meal; Probiotics; UV-sterilization; Weaning pigs; Ileal amino acid digestibility;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jorgensen H, Sauer WC, Thacker PA. Amino acid availabilities in soybean meal, sunflower meal, fish meal, and meat and bone meal fed to growing pigs. J Anim Sci. 1984;58:926-33.   DOI
2 AOAC: Official Methods of Analysis of the Association of Official Analytical Chemists International. 16thedition. Arlington, VA, USA: 1995
3 Fenton TW, Fenton M. An improved procedure for the determination of chromic oxide in feed and feces. Can J Anim Sci. 1979;59:631-4.   DOI
4 Baker KM, Stein HH. Amino acid digestibility and concentration of digestible and metabolizable energy in soybean meal produced from conventional, high-protein, or low-oligosaccharide varieties of soybeans and fed to growing pigs. J Anim Sci. 2009;87:2282-90.   DOI
5 Cervantes-Pham SK, Stein HH. Ileal digestibility of amino acids in conventional, fermented, and enzyme-treated soybean meal and in soy protein isolate, fish meal, and casein fed to weanling pigs. J Anim Sci. 2010;88:2674-83.   DOI
6 Lenehan NA, DeRouchey JM, Goodband RD, Tokach MD, Dritz SS, Nelssen JL, et al. Evaluation of soy protein concentrates in nursery pig diets. J Anim Sci. 2007;85:3013-21.   DOI
7 Jones CK, DeRouchey JM, Nelssen JL, Tokach MD, Dritz SS, Goodband RD. Effects of fermented soybean meal and specialty animal protein sources on nursery pig performance. J Anim Sci. 2010;88:1725-32.   DOI
8 Kim SW, van Heugten E, Ji F, Lee CH, Mateo RD. Fermented soybean meal as a vegetable protein source for nursery pigs: I. Effects on growth performance of nursery pigs. J Anim Sci. 2010;88:214-24.   DOI
9 Teng D, Gao M, Yang Y, Liu B, Tian Z, Wang J. Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae. Biocatal Agric Biotechnol. 2011;1:32-8.
10 Herkelman KL, Cromwell GL, Stahly TS, Pfeiffer TW, Knabe DA. Apparent digestibility of amino acids in raw and heated conventional and low-trypsin-inhibitor soybeans for pigs. J Anim Sci. 1992;70:818-26.   DOI
11 Oyeleke SB, Oyewole OA, Egwim EC. Production of protease and amylase from Bacillus subtilis and Aspergillu niger using Parkia biglobossa (Africa locust beans) as substrate in solid state fermentation. Adv Life Sci. 2011;1:49-53.
12 Eldridge AC, Black LT, Wolf WJ. Carbohydrate composition of soybean flours, protein concentrates, and isolates. J Agric Food Chem. 1979;24:799-802.
13 Cervantes-Pahm SK, Stein HH. Effect of dietary soybean oil and soybean protein concentrate on the concentration of digestible amino acids in soybean products fed to growing pigs. J Anim Sci. 2008;86:1841-9.   DOI
14 Spriet SM, Decuypere JA, Henderickx HK. Effect of Bacillus toyoi (Toyocerin) on the gastrointestinal microflora, concentration of some bacterial metabolites, digestibility of the nutrients and the small intestinal mean retention time in pigs. Meded Fac Landbouwkd Rijksuniv Gent. 1987;52:1673.
15 Giang HH, Viet TQ, Ogle B, Lindberg JE. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with a complex of lactic acid bacteria alone or in combination with Bacillus subtilis and Saccharomyces boulardii. Livest Sci. 2012;143:132-41.   DOI
16 Visessanguan W, Benjakul S, Potachareon W, Panya A, Riebroy S. Accelerated proteolysis of soy protein during fermentation of thua-nao inoculated with Bacillus subtilis. J Food Biochem. 2005;29:349-66.   DOI
17 Liener IE. Factors affecting the nutritional quality of soya product. J Am Oil Chem Soc. 1981;58:406-15.   DOI
18 Hong KJ, Lee CH, Kim SW. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J Med Food. 2004;7:430-5.   DOI
19 Zamora RG, Veum TL. Nutritive value of whole soybeans fermented with Aspergillus oryzae or Rhizopus oligosporus as evaluated by neonatal pigs. J Nutr. 1988;118:438-44.   DOI
20 Feng J, Liu X, Xu ZR, Lu YP, Liu YY. The effects of Aspergillus oryzae fermented soybean meal on growth performance, digestibility of dietary components and activities of intestinal enzymes in weaned piglets. Anim Feed Sci Technol. 2006;134:235-42.
21 Stein HH, Seve B, Fuller MF, Moughan PJ, de Lange CFM. Invited review: amino acid bioavailability and digestibility in pig feed ingredients: terminology and application. J Anim Sci. 2007;85:172-80.   DOI
22 National Research Council. Nutrient Requirement of Swine. 10th ed. Washington, DC: National Academy Press; 1998.
23 Yao L, Wang Z, Zhao H, Cheng C, Fu X, Liu J, et al. Protective effects of polysaccharides from soybean meal against X-ray radiation induced damage in mouse spleen lymphocytes. Int J Mol Sci. 2011;12:8096-104.   DOI
24 Feng J, Liu X, Xu ZR, Lu YP, Liu YY. Effect of fermented soybean meal on intestinal morphology and digestive enzyme activities in weaned piglets. Dig Dis Sci. 2007;52:1845-50.   DOI
25 Bachelor MA, Bowden GT. UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin Cancer Biol. 2004;14:131-8.   DOI
26 Verbeek CJR, Hicks T, Longdon A. Degradation as a result of UV radiation of bloodmeal-based thermoplastics. Polym Degrad Stab. 2011;96:515-22.   DOI
27 Htoo JK, Araiza BA, Sauer WC, Rademacher M, Zhang Y, Cervantes M, et al. Effect of dietary protein content on ileal amino acid digestibility, growth performance, and formation of microbial metabolites in ileal and cecal digesta of early-weaned pigs. J Anim Sci. 2007;85:3303-12.   DOI
28 Moter V, Stein HH. Effect of feed intake on endogenous losses and amino acid and energy digestibility by growing pigs. J Anim Sci. 2004;82:3518-25.   DOI
29 Diebold G, Mosenthin R, Sauer WC, Dugan MER, Lien KA. Supplementation of xylanase and phospholipase to wheat-based diets for weaner pigs. J Anim Physiol Anim Nutr. 2005;89:316-25.   DOI
30 Dunsford BR, Knabe DA, Haensly WE. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J Anim Sci. 1989;67:1855-64.   DOI