Browse > Article
http://dx.doi.org/10.3345/kjp.2009.52.10.1127

Magnetic resonance imagining findings of the white matter abnormalities in the brain of very-low-birth-weight infants  

Choi, Jae Hyuk (Department of Pediatrics, College of Medicine, Dankook University)
Chang, Young Pyo (Department of Pediatrics, College of Medicine, Dankook University)
Publication Information
Clinical and Experimental Pediatrics / v.52, no.10, 2009 , pp. 1127-1135 More about this Journal
Abstract
Purpose : To observe the abnormal white matter findings on the magnetic resonance imaging (MRI) scans of very-low- birth-weight (VLBW) infant brains at term-equivalent age and to determine the clinical risk factors for the development of periventricular leukomalacia (PVL). Methods : In all, MRI was performed in 98 VLBW infants and the white matter abnormalities were observed. Clinical risk factors for cystic and noncystic PVL were determined. Results : MRI scans of 74 infants (75.5%) showed diffuse excessive high signal intensity (DEHSI) in the periventricular white matter, 17 (17.3%) lateral ventricle dilation, 5 (5.1%) and 11 (11.2%) focal punctate lesions and cystic changes in the periventricular white matter, respectively, 9 (9.1%), germinal layer hemorrhage (GLH) or subependymal cysts 3 (3.1%) intraventricular hemorrhage (>grade 2) 2 (2.0%) posthemorrhagic hydrocephalus and 2 (2.0%) periventricular hemorrhagic infarct. Gestational age (GA), 1-minute Apgar score, Clinical Risk Index for Babies-II (CRIB-II) score, and inotrope use, and GA, CRIB-II score, postnatal steroid administration, inotrope use, and abnormal white blood cell (WBC) count at admission were related to cystic PVL and noncystic PVL development, respectively (P<0.05). However, in logistic regression analysis, CRIB-II (odds ratio, 1.63, 295% confidence interval, 1.15-2.30 P=0.006) for cystic PVL, and GA (odds ratio 0.90, 95% confidence interval, 0.82-0.99 P=0.036) for noncystic PVL were only significant independently. Conclusion : White matter abnormalities could be observed on MRI scans of the VLBW infant brains at term-equivalent age, and CRIB-II and GA were only independently significant for cystic and noncystic PVL development, respectively.
Keywords
Leukomalacia; Periventricular; Magnetic resonance imaging; Infant; Very low birth weight;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O'Shea TM, Klinepeter KL, Dillard RG. Prenatal events and the risk of cerebral palsy in very low birth weight infants. Am J Epidemiol 1998;147:362-9   DOI   ScienceOn
2 Maalouf EF, Duggan PJ, Rutherford MA, Counsell SJ, Fletcher AM, Battin M, et al. Magnetic resonance imaging of the brain in a cohort of extremely preterm infants. J Pediatr 1999; 135:351-7   DOI   ScienceOn
3 Dyet LE, Kennea N, Counsell SJ, Maalouf EF, Ajayi-Obe M, Duggan PJ, et al. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 2006;118:536-48   DOI   ScienceOn
4 Farrell TA, Hertzberg BS, Kliewer MA, Harris L, Paine SS. Fetal lateral ventricles: reassessment of normal values for atrial diameter at US. Radiology 1994;193:409-11   DOI   PUBMED   ScienceOn
5 Parry G, Tucker J, Tarnow-Mordi W. CRIB II: an update of the clinical risk index for babies score. Lancet 2003;361: 1789-91   DOI   PUBMED   ScienceOn
6 Childs AM, Cornette L, Ramenghi LA, Tanner SF, Arthur RJ, Martinez D, et al. Magnetic resonance and cranial ultrasound characteristics of periventricular white matter abnormalities in newborn infants. Clin Radiol 2001;56:647-55   DOI   ScienceOn
7 Inder TE, Warfield SK, Wang H, Hüppi PS, Volpe JJ. Abnormal cerebral structure is present at term in premature infants. Pediatrics 2005;115:286-94   DOI   PUBMED   ScienceOn
8 Krishnan ML, Dyet LE, Boardman JP, Kapellou O, Allsop JM, Cowan F, et al. Relationship between white matter apparent diffusion coefficients in preterm infants at term- equivalent age and developmental outcome at 2 years. Pediatrics 2007;120:e604-9   DOI   PUBMED   ScienceOn
9 Bozzao A, Di Paolo A, Mazzoleni C, Fasoli F, Simonetti A, Fantozzi LM, et al. Diffusion-weighted MR imaging in the early diagnosis of periventricular leukomalacia. Eur Radiol 2003;13:1571-6   DOI   ScienceOn
10 Counsell SJ, Allsop JM, Harrison MC, Larkman DJ, Kennea NL, Kapellou O, et al. Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 2003;112:1-7   DOI   PUBMED   ScienceOn
11 Inder TE, Anderson NJ, Spencer C, Wells S, Volpe JJ. White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. AJNR Am J Neuroradiol 2003;24:805-9   ScienceOn
12 Srinivasan L, Dutta R, Counsell SJ, Allsop JM, Boardman JP, Rutherford MA, et al. Quantification of deep gray matter in preterm infants at term-equivalent age using manual volumetry of 3-tesla magnetic resonance images. Pediatrics 2007; 119:759-65   DOI   PUBMED   ScienceOn
13 Counsell SJ, Rutherford MA, Cowan FM, Edwards AD. Magnetic resonance imaging of preterm brain injury. Arch Dis Child Fetal Neonatal Ed. 2003;88:F269-74   DOI   PUBMED
14 Roelants-van Rijn AM, Groenendaal F, Beek FJ, Eken P, van Haastert IC, de Vries LS. Parenchymal brain injury in the preterm infant: comparison of cranial ultrasound, MRI and neurodevelopmental outcome. Neuropediatrics. 2001;32:80-9   DOI   ScienceOn
15 Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009;8:110-24   DOI   ScienceOn
16 Miller SP, Ferriero DM, Leonard C, Piecuch R, Glidden DV, Partridge JC, et al. Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr 2005; 147:609-16   DOI   ScienceOn
17 Maalouf EF, Duggan PJ, Counsell SJ, Rutherford MA, Cowan F, Azzopardi D, et al. Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 2001;107:719-27   DOI   PUBMED   ScienceOn
18 Carmody DP, Dunn SM, Boddie-Willis AS, DeMarco JK, Lewis M. A quantitative measure of myelination development in infants, using MR images. Neuroradiology 2004;46:781-6   DOI   ScienceOn
19 Counsell SJ, Shen Y, Boardman JP, Larkman DJ, Kapellou O, Ward P, et al. Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 2006;117:376-86   DOI   ScienceOn
20 Mirmiran M, Barnes PD, Keller K, Constantinou JC, Fleisher BE, Hintz SR, et al. Neonatal brain magnetic resonance imaging before discharge is better than serial cranial ultrasound in predicting cerebral palsy in very low birth weight preterm infants. Pediatrics 2004;114:992-8   DOI   PUBMED   ScienceOn
21 Inder TE, Wells SJ, Mogridge NB, Spencer C, Volpe JJ. Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 2003;143:171-9   DOI   ScienceOn
22 Wheater M, Rennie JM. Perinatal infection is an important risk factor for cerebral palsy in very-low-birthweight infants. Dev Med Child Neurol 2000;42:364-7   DOI   ScienceOn
23 Paneth N, Rudelli R, Monte W, Rodriguez E, Pinto J, Kairam R, et al. White matter necrosis in very low birth weight infants: neuropathologic and ultrasonographic findings in infants surviving six days or longer. J Pediatr 1990;116:975-84   DOI
24 Levine D, Trop I, Mehta TS, Barnes PD. MR imaging appearance of fetal cerebral ventricular morphology. Radiology 2002;223:652-60   DOI   ScienceOn
25 Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006;355:685-94   DOI   ScienceOn
26 Bancalari E, Claure N. Definitions and diagnostic criteria for bronchopulmonary dysplasia. Semin Perinatol 2006;30:164- 70   DOI   ScienceOn
27 Aida N, Nishimura G, Hachiya Y, Matsui K, Takeuchi M, Itani Y. MR imaging of perinatal brain damage: comparison of clinical outcome with initial and follow-up MR findings. AJNR Am J Neuroradiol 1998;19:1909-21   ScienceOn